Recycling in Japan

Kazuyuki Kubo
Leader, Pavement Team
Public Works Research Institute
Japan

History of Pavement Recycling

1970s Development of Recycling Technology for Pavement Wastes was started.

1984 Published “Handbook of Recycling Technology of Pavement Waste”

1986 Published “Handbook of In-situ Surface Recycling”

1987 Published “Handbook of In-situ Basecourse Recycling”

1992 Published “Handbook of Plant Recycling of Pavement”

2004 Published “Handbook of Pavement Recycling”
Recycling Ratio of Construction By-Products

- Recycling Ratio of Asphalt Concrete is Over 98%

<table>
<thead>
<tr>
<th>Construction By-Products</th>
<th>2000 Fiscal Year</th>
<th>1995 Fiscal Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>All of Construction</td>
<td>58%</td>
<td>85%</td>
</tr>
<tr>
<td>By-Products</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asphalt Concrete</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cement concrete</td>
<td>65%</td>
<td>83%</td>
</tr>
<tr>
<td>Waste from Construction</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wood Sludge</td>
<td>40%</td>
<td>41%</td>
</tr>
<tr>
<td>Construction Sludge</td>
<td>9%</td>
<td>11%</td>
</tr>
<tr>
<td>Mixed Construction</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wastes</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Recycling Method for Pavement

- Base course waste
- Asphalt mixture waste
- Cement concrete waste

- Plant recycling method
- Recycled base course material
- Recycled asphalt mixture
- Recycled surface / binder course

- In-place recycling method
- In-place recycled base course
- In-place recycled surface

International Workshop
ISAP Technical Committee APE
Asphalt Pavements and Environment
Qingtao, China, August 8, 2009
Plant Recycling

- Recycle pavement by-products at a stationary mixing plant (recycling mixing plant)
- Reuse them as pavement materials

Most popular in Japan
- Recently, the ratio of recycled asphalt mixture is close to 70%.
- Recycled asphalt mixture has already been promoted to use according to the following law
 - Law Concerning the Promotion of Procurement of Eco-Friendly Goods and Services by the State and Other Entities (*Law on Promoting Green Purchasing*), enacted in FY2000
In-place Base Course Recycling

- Crush existing asphalt mixtures
- Mix the milled asphalt mixture with existing granular base material and stabilizing agents such as cement and/or emulsified asphalt
- Compact this mixture to form a new base course
- Finally, construct new asphalt layers as surface and binder courses

In-place Base Course Recycling Method

- Limitation on the thickness of existing asphalt layers (to 10cm)
- Rather popular at local roads
- Technology transfer has been tried to Vietnam or other Asian countries
In-place Surface Recycling

- Heat the existing asphalt mixture
- Scarify to loosen the material
- Add new asphalt mixture and/or rejuvenators if necessary
- Spread and compact it to construct a new surface course or binder course.

Once it was popular in expressways
- Drainage asphalt pavement (DAP) has become popular
- In-place surface recycling is not adequate for DAP
- There is an environmental problem such as an influence of heated air to plants along the roads
Outstanding problems about AC (Asphalt Concrete) recycle

- **Improve the ratio of AC waste reclaimed to AC**
 - According to the survey in 2002,
 - Total amount of AC waste in Japan is 30 million tons
 - Amount of AC waste recycled to reclaimed AC is 15 million tons (≈50%)
 - The rest has been reused as recycled base course material
 - Recycle use of modified AC and Porous AC
 - How will modifier act in the recycled mixture?
 - How about the influence of the difference in gradation between dense-graded AC and Porous AC
- **Evaluation method for recycled asphalt**
 - Present: Penetration of old asphalt
 - Revised: Indirect tensile test for reclaimed AC mixture
Typical wastes from other areas

- Wood
- Molten slag made from municipal waste and sewer sludge
- Glass
- Steel slag
- Used tire rubber
- Fly ash from fire power plants

Attention to use waste from other areas

- Environmental Safety
 - No seeping out of any harmful materials such as lead, chrome, etc.
- Durability
 - Equal strength with natural aggregate in hardness, wear-resist, etc.
- Economical
 - Not so expensive rather than natural aggregate
- Stable supply
 - Can be supplied with constant quantity and uniform quality
- Sustainability
 - Can be recycled in several times
Thank you for your attention!

See you again at
ISAP NAGOYA 2010

http://isap-nagoya2010.jp/