Opportunity and Challenge of Use of RAP/RAS Mixes in Texas

Fujie Zhou, PhD, PE

Texas A&M Transportation Institute Jan. 11, 2015; ISAP Day at 94th TRB

Outline

- Introduction: RAP/RAS
 - Opportunities
 - Challenges
- Approaches for addressing the challenges
 - Best practices for RAP/RAS processing
 - Ways to improve cracking resistance
- Balanced mix design method
- Summary

Introduction: Opportunities

- In 2013 Texas used
 - RAP: >1,000,000 tons
 - RAS: >150,000 tons
- □ TxDOT specification allow:
 - 20% RAP in surface mixes, combining that with up to 5% RAS in most mixes

□ Great Opportunities for <u>E</u>conomics and <u>E</u>nvironment!

Introduction: Engineering Challenges

- RAP/RAS variability
- Durability of RAP/RAS mixes (early cracking)
- Unknown blending
 Virgin/RAP/RAS binders
- Workability and compaction of RAP/RAS mixes

Address RAP/RAS Variability

RAP/RAS Variability

Gradation, asphalt content, PG

- RAP: Fresh/"young"/old pavements
- RAS: Manufacture waste/Tear-off

Six steps of best practice for RAP process

- 1. Eliminate contamination
- 2. Separate RAP stockpiles from different sources
- 3. Blend or mix before processing RAP stockpiles
- 4. Crush or fractionate RAP stockpiles (<u>Avoid over</u> <u>crushing</u>)
- 5. Store the processed RAP using paved, sloped surface
- 6. Characterize the processed RAP and mark stockpiles

1. avoid contamination

3. blend stockpiles

5. Store it right

2. Separate stockpiles

Six steps of best practice for RAS process

Step 6: Storing

Address durability/cracking issue

□ We tried all the following approaches in the field

- Set up upper limit for RAP/RAS
- Reduce design air voids
- Use soft virgin binders, especially on the lowtemperature grade (i.e., PG XX-28, PG XX-34)
- Rejuvenate RAS binder in the mix design process
- We found out the first three approaches worked.
 Rejuvenator test sections are still under evaluation.

Balanced RAP/RAS Mix Design

- Volumetrics based approach
- VBE to control cracking
- Hamburg/APA to control rutting
- Feature of RAP/RAS mixes: <u>Unknown VMA (VBE</u>)
 - Because we don't know how RAP/RAS binder blends with virgin binder.

Balanced RAP/RAS Mix Design

- Hamburg test for rutting/moisture damage
- Overlay test for cracking (cracking requirement)
- □ Max. density-98% for controlling potential bleeding

Why project-specific design: RAP/RAS field test sections and performance

Amarillo-Overlay: (Aug 2009)

- IH40: Heavy traffic; Cold weather; Soft binder
- RAP: 0, 20, 35%

Pharr district-New Const.: (April 2010)

- FM1017: low traffic; Hot weather; stiff binder
- **RAP: 0, 20, 35%**

- Laredo-Overlay: SH359, 20%RAP (Mar. 2010)
- Houston-New Const.:SH146, 15%RAP/5%RAS (Oct. 2010)
- Fort Worth-AC/CRCP: Loop 820 (July 2012)

Why project-specific design: RAP/RAS field test sections and performance

Test sections		Highway	Overlay/ new const.	Weather	Traffic MESAL	OT cycles	Performance
Amarillo	0%RAP	IH40 (severely cracked thick asphalt pavement)	4 inch/ overlay	Cold	30	95	3 yrs: 100% refl. cracking
	20%RAP					103	
	35%RAP					200	3 yrs: 57% refl. cracking
Pharr	0%RAP	FM1017-Very good support	1.5 inch/ new const.	Very hot	0.8	28	3yrs: overall - good conditions
	20%RAP					6	
	35%RAP					7	
Laredo	20%RAP	SH359-regular support	3 inch/ overlay	Very hot	1.5	3	3yrs: No cracking
Houston	15%RAP/ 5%RAS	SH146-Very good support	2 inch/new const.	hot	3.0	3	2.5yrs: No cracking
Dalhart	5%RAS	US87	3 inch/ Overlay	Cold	3.0	48/96	96 cycles-20% RCR; 48 cycles- 50%RCR

Why project-specific design: RAP/RAS field test sections and performance

- 1. RAP/RAS mixes can perform well at certain locations.
- 2. One OT requirement cannot fit for all.
- 3. Successful use of RAP/RAS mixes depends on
 - Weather/Traffic
 - AC overlay
 - Overlay thickness, Existing pavement structure (AC/AC; AC/PCC)
 - Existing pavement conditions
 - New construction
 - Pavement structure and which layer (surface, base, etc.)
- 4. Design the mix for project-specific conditions

Balanced RAP/RAS Mix Design for Project-Specific Service Conditions

- Hamburg test for rutting/moisture damage
- Overlay test for cracking
 - OT requirement determined by Overlay program
- □ Max. density-98% for controlling potential bleeding

Balanced RAP/RAS mix design for project specific condition

Balanced RAP/RAS Mix Design for Project-Specific Conditions

AC overlay scenarios
 AC/PCC
 AC/AC/CTB
 AC/AC/granular base
 Traffic level: 3 MESAL
 SH/US: 3-5 MESAL

- Weather:
 - Amarillo
 - Austin
 - McAllen

🗆 Amarillo

Austin

McAllen

Summary

- □ Best practices for RAP/RAS process are available.
- RAP/RAS mixes can have similar or even better performance with proper design.
- Balanced RAP/RAS mix design is established:
 - Hamburg test for rutting/moisture damage
 - OT for cracking; Project-specific OT requirement
 - Max. density to control potential bleeding
- Different approaches are available for improving RAP/RAS mix performance if needed.

Thank You All!

Design the mixes for project-specific condition!

