Asphalt Pavement Response and Fatigue Performance Prediction Using the VECD Approach-Application to Warm Mix Asphalt

Y. Richard Kim, Ph.D, P.E. North Carolina State University

Presented at the International Workshop on Cold and Warm Asphalt Mixture Design/Characterization and Pavement Design

Fortaleza, Brazil

October 5, 2009

Outline

- FHWA PRS ProjectVEPCD Model
 - Characterization
 - Verification
 - Application
- NCHRP 1-42A Integrated VECD-FEP++

- □ Four year long project started in Feb. 2007
- Objectives
 - To develop various tools for testing and analysis of HMA mixture
 - To develop a hierarchical system for performance-related specification
- The original research plan includes a wide range of HMA mixtures from various pavement sections.
- Recently incorporated RAP and WMA mixtures from NCAT Test Track and Manitoba projects

Summary of PRS Pavements

- □ FHWA ALF Pavements (control and modified)
- NY I-86 Perpetual Pavements
- NCAT RAP and WMA Pavements
 - Control, OGFC w/15% RAP, High RAP (50%), High RAP plus WMA (Evotherm and Advera)
- Manitoba RAP and WMA Pavements
 - WMA (Sasobit, Advera, Evotherm)
 - RAP (0, 15, 50%)
- Chinese Perpetual Pavements in Binzhou, Shandong
- □ KEC Test Road Pavements

Proposed Hierarchical PRS

Model Description		Level 1	Level 2	Level 3
E*		Unconfined and Confined E*	AMPT E*	IR E* and 55°C Predictive Equation
HMA Model	Cracking (Tension)	Uniaxial VEPCD	Uniaxial VEPCD	Predictive Equation for VEPCD Coefficients from Mix Characteristics
	Rutting (Compression)	MVEPCD	VP at a Representative Confining Pressure	Predictive Equation for VP Coefficients from Mix Characteristics
Pavement Model		MVEPCD-FEP++	Layered Viscoelastic Model	Layered Viscoelastic Model
Testing Time		17 days	5 days	Less than 1 day
Analysis Time		3 days	2 days	Less than 1 day
Total Time		20 days	7 days	1 day

ach

VEPCD Model

achieve!

VEPCD Modeling Approach

VECD Experimental Program

- Dynamic modulus (LVE Characterization)
 - -10°, 5°, 20°, 40° and 54°C
 - 25, 10, 5, 1, 0.5 and 0.1 Hz
 - 50 75 microstrain peak-to-peak strain amplitude
 - Tension-compression protocol
- Monotonic at 19°C or controlled crosshead cyclic at 19°C and 10 Hz (Damage Characterization)

NC STATE UNIVERSITY

Linear Viscoelastic Behavior

Damage Characteristic Curve Cyclic and Monotonic

Study Mixtures

- □ FHWA ALF pooled fund study TPF-5(019)
- Four mixtures each the same coarse 12.5 mm gradation with the same asphalt content (5.3%)
 - Unmodified PG 70-22 (Control)
 - Crumb Rubber Terminal Blend (CRTB, PG 76-28)
 - Styrene Butadiene Styrene (SBS, PG 70-28)
 - Ethylene Terpolymer (Terpolymer, PG 70-28)

NC STATE UNIVERSITY

ALF Mixtures Comparison LVE Characteristics

NC STATE UNIVERSITY

Simplified Formulation

Verification

VECD Comparison of ALF Mixtures Damage Characteristics

S

VEPCD Model Verification

Random Loading Validation

Random Stress level and frequency, 87.5-650 kPa, 1-20 Hz, 25°C

Random Loading Verification

MEPDG Fatigue Model

Fatigue Life Prediction Using Monotonic Data

Failure Criteria

VECD Failure Criteria

$\begin{array}{l} Prediction \ of \ N_f \ vs. \ \epsilon_t \ Fatigue \\ Relationship \end{array}$

Prediction of Fatigue Life Characterized with Cyclic

Fatigue Life Verification

Multiple mixtures, 10 Hz, 100 – 700 με, 5°, 19°, and 27°C

Fatigue Endurance Limit Using VECD Model

Effect of Mixture Variables Solid Symbols = Modified Mixes

Thermal Cracking Verification

TSRST Prediction

Predictions from the VEPCD Model

- Stress-strain behavior of asphalt mix in:
 - monotonic tests at varying rates of loading and temperature; and
 - random load cyclic tests under varying stress/strain magnitudes, temperatures, and loading frequencies.
- \Box N_f vs. ε_t relationship at various temperatures
- Endurance limit
- TSRST results under different cooling rates including:
 - thermal stress development history;
 - fracture time, fracture stress, and fracture temperature.

VECD Model Application

Fatigue Performance Prediction of HMA Pavement

- Two-Step Method
 - Pavement response model (3-D FEP++) plus VECD model
- Integrated Method
 - Finite element simulation of damage under continuous loading cycles

Effect of Material Type Vertical Strain

Control

SBS-Modified

ALF Pavement Transverse Strain Response VECD Input Kernel

ALF Mixtures Comparison Damage Characteristics

S

ALF Fatigue Life Prediction

Integrated Method

achieve!

Simulation Results (Damage) Only Mechanical Loading

Pavement Simulation for Lime-Modified Mix Evaluation

Effect of Moisture Conditioning

C: 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75

NCHRP 1-42A VECD-FEP++

Effect of Aging on |E*|

Effect of Aging on Phase Angle

Effect of Aging on VECD Model

achieve!

Healing Model *Kim, Lee, and Little (AAPT 1997)*

NC STATE UNIVERSITY

Simulation Results (Cracking Index) Mechanical and Thermal Loading, Aging, Healing, and Viscoplasticity

Summary

- VEPCD model's ability to predict material's behavior at a wide range of conditions
- Cracking simulation of VECD-FEP++ does not need to know the crack location a priori.
- Thermal stress, aging, healing, viscoplasticity models implemented into VECD-FEP++
- VECD-FEP++ as a tool to investigate and model WMA materials and pavements

NC STATE UNIVERSITY

Thank you!

Stiff Subgrade

NCAT Test Track Cross Section

Summary of NCAT Mixtures

HMA Mixtures

- Control, OGFC (15% RAP)
- High RAP (50%), High RAP + WMA
- WMA
 - Evotherm (additive), Advera (foam)
- RAP
 - 0, 15, 50% RAP
- Binder Grades
 - Surface/Intermediate layers
 - ✓ No RAP PG 76-22
 - ✓ With High RAP PG 67-22
 - Base layer
 - ✓ PG 67-22

Summary of MIT Mixtures

WMA Project

- WMA Additives
 - ✓ Advera, Sasobit, Evotherm
- Layer Properties
 - ✓ Surface layer 0% RAP, 150/200 pen
 - ✓ Intermediate layer 30% RAP, 200/300 pen

RAP Project

- RAP
 - ✓ 0, 15, 50%
- Binder

✓ 150/200 pen for all % RAP, also 200/300 pen for 50% RAP

- Base Materials (not sampled)
 - ✓ 70% RAP

NC STATE UNIVERSITY

MIT WMA Sections

