

IV Simpósio Internacional de Avaliação de Pavimento e Projetos de Reforço - SINAPPRE

Towards Long Lasting Pavement Design: Pavement Response to Actual Loading

Imad L. Al-Qadi

University of Illinois at Urbana-Champaign

Flexible Pavement

Factors Affecting Flexible Pavement Performance

- Hot-Mix Asphalt (HMA) characteristics
 - Aggregate size, shape, texture and gradation
 - Binder stiffness and content
 - Air void content
- Loading conditions
 - Vehicle speed
 - **Tire type**, load and pressure
 - Traffic wandering

Pavement structural design

- Layer thickness and stiffness
- Interface condition
- Base and subgrade support

Environmental factors

- **Temperature**
- Moisture

Current MEPDG Analysis Approach

 Poisson's Ratio Complex Modulus, E* IDT Strength Thermal Contraction Creep Properties **Pavement Response Analysis Engine**

(LEA/FE)

After MEPDG

Shortcomings of Current Approach

□ Vehicular loading:

- Static and stationary circular loading
- Uniform vertical contact stresses

Hot-Mix Asphalt Properties:

Elastic properties corresponding to single temperature and loading rate

Damage transfer functions:

- Rutting: compressive strain only
- Fatigue: tensile strain only
- Neglecting effect of shear strain

Solutions

Understand real vehicle loading

Moving load, surface contact stresses, dynamic effect ...

Utilize advanced finite element approaches

Appropriate material characterization and interface bonding condition

Critical pavement responses for pavement damage prediction

Mechanistic Framework

3D FE Pavement Model

Pavement Design In-Plane Dimension (mm) Infinite Domain

Boundary Condition Effect

Dynamic Analysis

- Structure response under dynamic loading depends on the ratio of load frequency to natural frequency of the structure
 - □ Flexible pavement natural frequency = 6-14Hz
 - Vehicle loading frequency = 0-10Hz
- Dynamic analysis considers mass inertia and damping forces effect on pavement responses due to a moving load
- Implicit dynamic analysis is selected

Tire Contact Stress Measurement

- □ Three Horizontal Data-Triggering Points in a Tread
- Cover Whole Longitudinal Contact points

3D Tire-Pavement Contact Stresses

Moving Load Simulation

Traditional method

- Triangular, trapezoidal, rectangular amplitude in constant loading area
- Pavement at different depths have same loading time
- Impulsive loading (hammering)
- Continuous loading
 - Loading area changes as tire moving
 - Loading amplitudes are linearly varied with time for the entrance and exit parts of tire imprint

Loading Amplitudes (Entrance/ Exit)

HMA Complex Modulus

- > Experiment setup: uniaxial or indirect tensile
- > Using Sigmoidal function for master curve

where,

- E* = complex modulus;
- t = loading period;
- T = temperature in ° Rankine;

 $\Delta E_{a,\delta}$, β and γ = fitting parameters; and Max = limiting maximum modulus.

Linear Viscoelasticity

□ Generalized Maxwell Solid Model:

One spring and Maxwell elements in parallel

- Relaxation modulus:
 - Converted from complex modulus and expressed as Prony Series

$$E(t) = E_0 (1 - \sum_{i=1}^{N} E_i (1 - e^{-t/\tau_i}))$$

3D Dynamic Analysis: Viscoelastic Effect

Stress under Transient Dynamic Loading

FE Model Validation

□ Bottom of the wearing surface (38.1mm)

Pavement Damage Mechanism

□ Fatigue cracking

Tensile strain at bottom of HMA

Surface cracking (top-down or "nearsurface")

- Tensile and shear strain
- Thermal stress and aging effect

□ HMA rutting

- □ Shear flow
- Densification

Subgrade permanent deformation

Strain Distribution in Depth

Impact of Using Recycled Materials

RAP's Binder Blending Scenarios @ 20% RAP

RAP's Binder Blending Scenarios @ 40% RAP

Complex Modulus Results

Double Bumping Effect on Modulus

Fracture Energy w/ Varying RAP

As RAP ↑, **Fracture Energy** ↓

Summary

- Accurate pavement response prediction requires realistic loading simulation and appropriate material and interface modeling
- 3D tire contact stresses (non-uniformity and tangential shear stress) may affect the prediction of top-down cracking, primary rutting, and occasionally fatigue damage
- Shear strains at pavement near-surface are significant; fresh look into "NEAR SURFACE" CRACKING" is needed in thick pavement
- Find critical repose for each failure mechanism

Thank You

