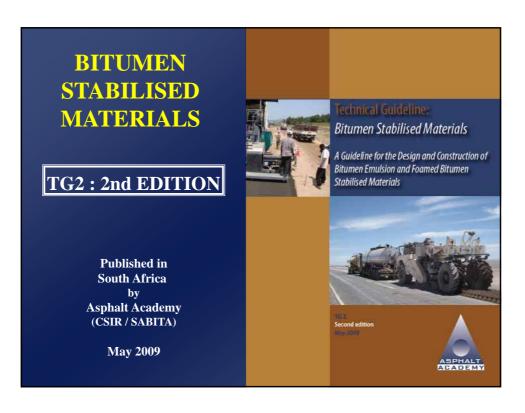


Barriers to recycling of RAP in South Africa (and many developing countries)

- Lack of understanding (perceived to be low quality materials)
- Lack of specs/legislation
- Variability of HMA's in situ
- 80% of surfacing in SA = seals
- Economic benefits not realized (need legislation to enforce recycling then contractors will use it for competitive edge)

Availability of RAP in South Africa

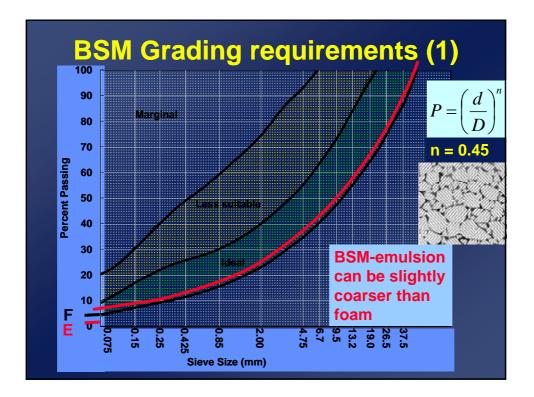
- Thick layers seldom used in RSA (only heavily trafficked ones)
- Type of RAP
 - 1960's to 70's = Gap graded RAP
 - 1970's to 90's = Semi-gap graded RAP
 - 1990's + = Continuously graded & PMBs


Mix Design in South Africa

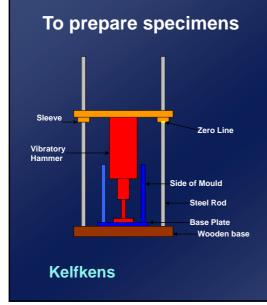
- Recovered Pen, Tr&b and η if >15% RAP in new HMA
- Remember BC in RAP is higher in fines than coarse fraction
- Limits of RAP based on mix type
 - <2% in SMA <12% in PMA
 <18% in unmodified <23% in binder layer
 <27% in base

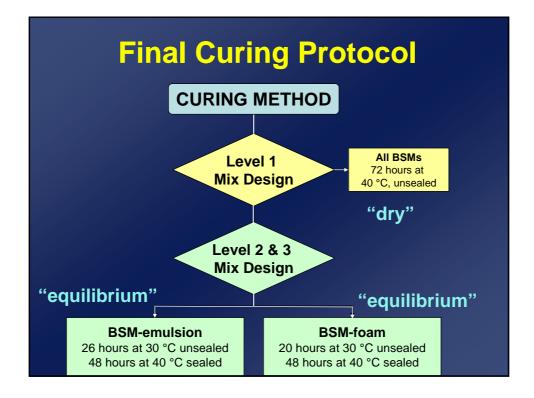
Manufacture lim	itations
Mixing Plant Type Batch plant Added in pugmill Added before hot elevator 	Max RAP <15% <30%
 Drum plant Parallel heating Contra-flow heating Twin-dryer drum Double drum In plant & in place 	10 – 20% 20 – 30% <50% <70% <85%

Some general values

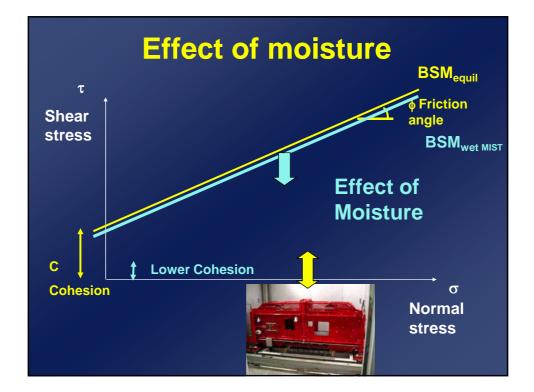

- In South Africa, less than 5% of total RAP used in HMA (see comparative figures in Introduction ppt)
- Only 4 million tons of new HMA every year

Mix Design


Some of the issues for developing countries



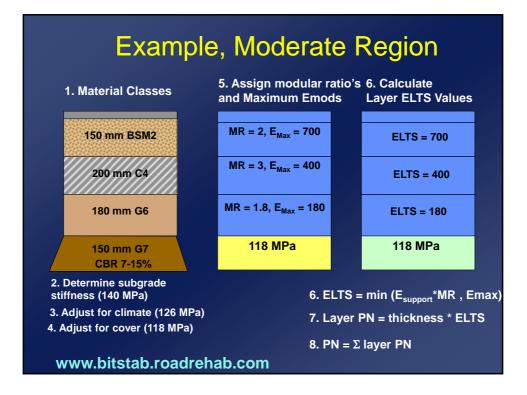
Vibratory Compaction Hammer

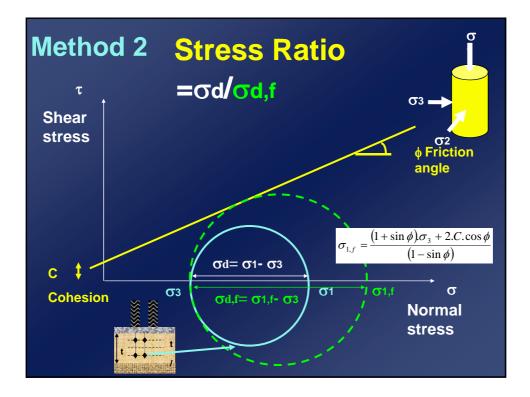

	Com	pactio	n time	e (vibr	atory)
	Phase	Level 1	Lev	Level 3	
	Test	ITS	ITS	UCS	Triaxial
	Foot 	100mm	150mm	150mm	150mm
	Height	65mm	95mm	125mm	300mm
	Layers	1	2	2	5
Ð	Surchg	5 kg	10 kg	10 kg	10 kg
Time	Foam	10 sec	25 sec	25 sec	25 sec
Comp	Emuls	10 sec	15 sec	15 sec	15 sec

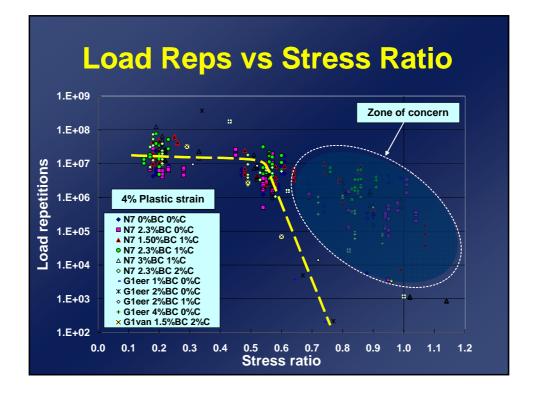
		Lev	el 1	and	2 Tes	sting
Test		Dia ∳ mm	BSM1 (kPa)	BSM2 (kPa)	BSM3 (kPa)	Comments
ITS _{dry}	Ξ	100	>225	175 to 225	125 to 175	Indicates OBC
ITS _{wet}	Level 1	100	>100	75 to 100	50 to 75	Indicates active filler type & amt
TSR	_	100	Not applicable		Prob mat TSR < 50 % ITS _{dry} > 400 kPa	
ITS _{equil}	el 2	150	>175	135 to 175	95 to 135	OBC refined
ITS _{soaked}	Level	150	>150	100 to 150	60 to 100	Check for ITS _{wet}

Level 3 T	esting
Triaxial	Tests

Equivalent BSM Class	Angle of Internal Friction (°)	Cohesion (kPa)
BSM 1	> 40	> 250
BSM 2	30 to 40	100 – 250
BSM 3	< 30	50 – 100


BSM Classification ito Moisture Resistance


Equivalent BSM Class	Retained Cohesion (%)
BSM 1	> 75
BSM 2	60 – 75
BSM 3	50 – 60
Unsuitable	< 50



Method 1: Pavement Number Knowledge Based Approach

- Gather all available field performance data
- Utilise best elements of mechanistic analysis
- Robust and easy to use
- Validated!
- Develop clear, strong links to field testing (material classification) and specifications
- Data Sets
 - 20 field sites
 - 7 HVS Sites (22 test sections)
 - Construction, maintenance & performance information

Conclusions

- Understanding of material behaviour of BSMs has increased significantly
- Active filler versus bitumen content in BSM is very important
- Cemented layer is best in subbase
- More advanced test methods (triaxial)
- Mix Design is linked to Structural Design method for BSMs

