ISAP Working Group WG2

Environmental Considerations for Cold Recycling, Energy and Emissions: an EU perspective

Martin van de Ven

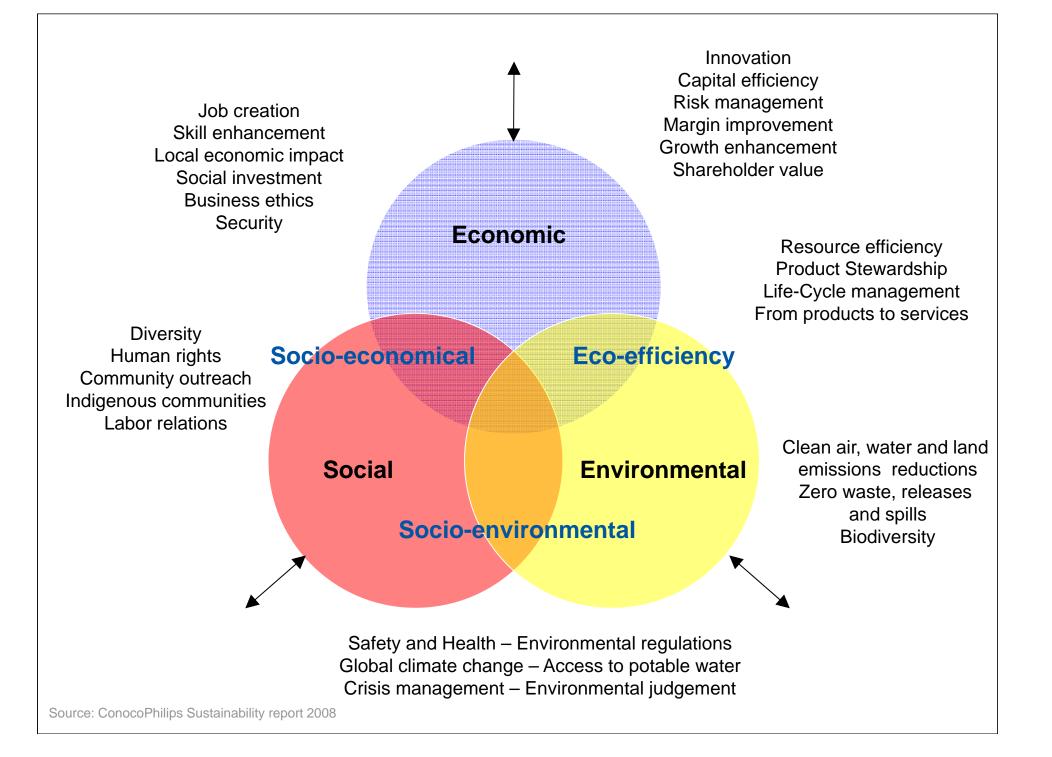
1

Delft University of Technology

Contents

- Sustainability
- Recycling in Europe
- LCA
- European approach to sustainability
- How is sustainable contracting promoted in the Netherlands

Sustainability


 "Meeting the needs of the present generation without compromising the ability of future generations to meet their needs." (Our Common Future, Brundtland, 1987)

People, Profit, Planet

•Is it possible to provide an objectively quantified environmental effect of recycling

January 13, 2012

General opinion EU (political, private): Preservation of the Environment is necessary

- Reduce energy consumption
- Reduce global warming (reduce CO₂ production)
- Reduce acidity levels
- Reduce use of virgin materials
- Promote recycling
- Reduce fine dust levels
- Reduce noise levels
- Etc etc

Developments last decade in Europe with recycling (including cold mixes)

• Euroean Union encourages Road Authorities to recycle:

• PARAMIX:	2001-2003
• SAMARIS:	2002-2006
• SCORE:	2002-2005

- EAPA activities: 2004, 2008
- Re-Road-End of life strategies op asphalt pavements: 2009-
- Direct-Mat: web database 2009-

European norm on reclaimed asphalt

used for the intended purpose in a safe and environmentally responsible way."

Non-waste status should only be obtained after the waste has undergone treatment which results in a product that meets **specific European quality criteria,** ensuring that it may be used for the intended purpose in a safe and environmentally responsible way

January 13, 2012

Definition recycling (EAPA)???

Recycling - Reuse

• Recycling: same function as in the original application

(adding the reclaimed asphalt to new asphalt mixes)

• Re-use: utilisation a lesser function than in the original application

(reclaimed asphalt as foundation, fill or base course material)

EAPA

Asphalt in Figures 2008

→ Recycling

Country	Available reclaimed asphalt % of available reclaimed asphalt used				in	
	(tonnes)	Hot and warm	Half warm	Cold	Unbound layers	
		recycling	recycling	recycling		
Austria	350 000					
Belgium	1 500 000	55				
Czech Republic	1 500 000	25	0	30	30	
Denmark	414 000	59	0	0	41	
Finland	500 000					
France	6 500 000	23		< 2	> 40	
Germany	14 000 000	(82)			18	
Greece	0		0	0	0	
Great Britain	4 000 000					
Hungary	27 560	26	0	18	41	
Iceland	30 00 0				25	
Ireland	80 000	15				
Italy	13 000 000	\frown				
Netherlands	3 500 000	(83)		0,50	~	
Norway	720 000	83	≈ 0	10	63	
Poland	1 100 000	4				
Romania	18 000	60	10	10	5	
Slovenia	25 600	51		49		
Spain	1 150 000	48	14	18	30	
Sweden	1 000 000	65	20	10	5	
Switzerland	1 100 000	50		50	~	
Turkey	1 168 000	2			98	

TUDelft

Numbers from EAPA 2008

- Yearly asphalt production in Europe: 330 million ton
- Available for recycling: 52 million ton
- This quantity is recycled/re-used for 86% at the moment

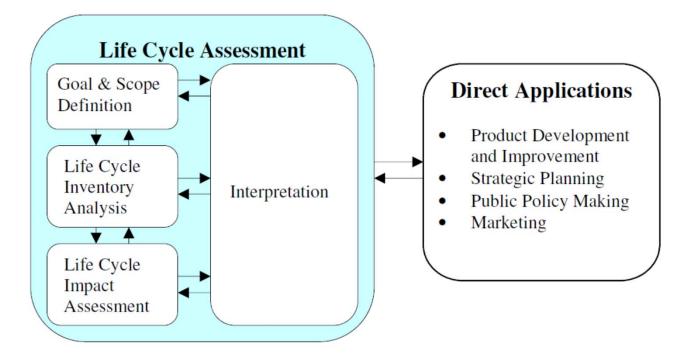
Conclusions EAPA

- Asphalt is 100% recyclable and should remain
- Client can stimulate recycling
- Legislation can stimulate recycling
- Recycling is important for sustainability: responsibility of product-owner and road owner.

For a sustainable future recycling is essential

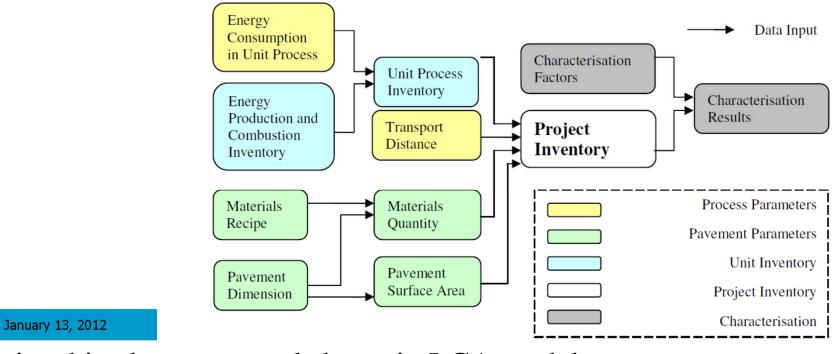
LCA: Life Cycle Assessment

- The use of (recycled) materials in pavement construction should be supported by a full assessment of the associated environmental impacts including:
 - Energy consumption
 - Emissions and leaching
 - Etcetera
- LCA is widely accepted in other industries
- ISO 14040 series



LCA

- LCA starts with a definition of the aim and scope of the study
- LCI =Life cycle inventory development: all significant environmental impacts (input + output) are quantified and compiled
- LCIA = Life cycle impact assessment



Framework of LCA (ISO14040)

Worksheet	Description	Sub-worksheet]
	Data on transport distance and fuel	'Energy in transport'	
Process Parameters	efficiency, energy consumption of unit	'Energy in materials production'	
	processes in a pavement project	'Energy in pavement construction'	
	Data on pavement dimension and materials	'Pavement dimensions'	
Pavement Parameters	recipe, determine the tonnage of materials in	'Materials recipe'	
	a pavement project	'Pavement life time'	Worksheets in LCA model
	Inventory data for unit operation of transport, materials production and pavement construction	'Energy production'	
Unit Inventory		'Combustion of fossil fuels'	
Olint Inventory		'Transport vehicle operation'	
		'Construction vehicle operation'	
	Unit inventory data are accredited into the	'Production process'	
Project Inventory	Unit inventory data are aggregated into the unit of the pavement project	'Transport process'	
		'Construction process'	
Characterisation Results	Inventory results are assigned to defined impact categories, characterised by selected models and presented by category indicators	'Global warming'	
		'Acidification'	
		'Human toxicity'	
	models and presented by category indicators	'Eco-toxicity', etc	

Relationships between worksheets in LCA model

Europe

- European targets:
 - 20% CO₂ reduction in 2020 compared to 1990
 - Sustainable energy in 2020 from 2% now tot 14%

European developments in which environment-information is needed

- Building products directive CPR: BWR3 en BWR7
- SCP-SIP
 - EcoDesign: Directive 2009/125/EC
 - Ecolabel: Regulation no. 66/2010 25 van November 2009
 - Energylabel: Directive 2010/30/EC
 - Green Public Procurement (June 2010)
- Ecolabel for Buildings
- EPBD
- Waste Framework Directive
- Dangerous Substances
- Reach
- Resource Efficiency

January 13, 2012

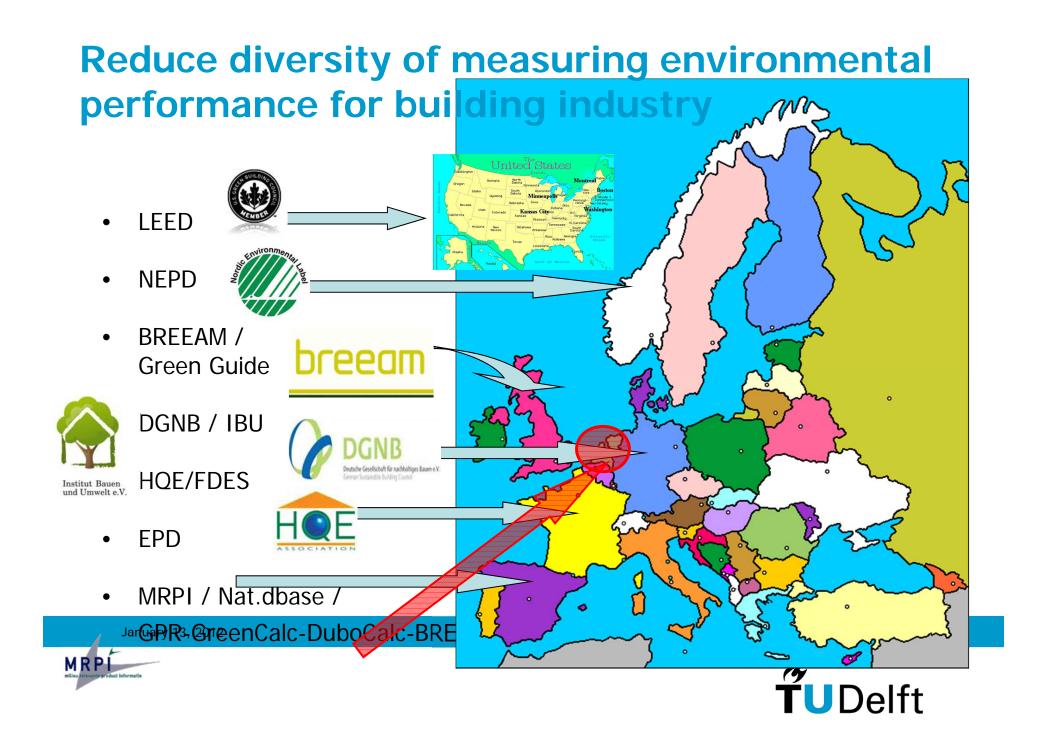
(

European approach

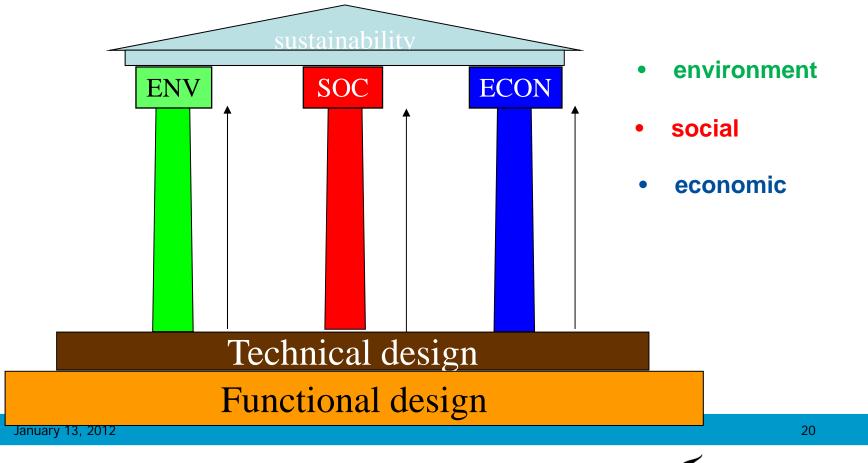
CPR

AFTER USE

ECODESIGN for products


CPD

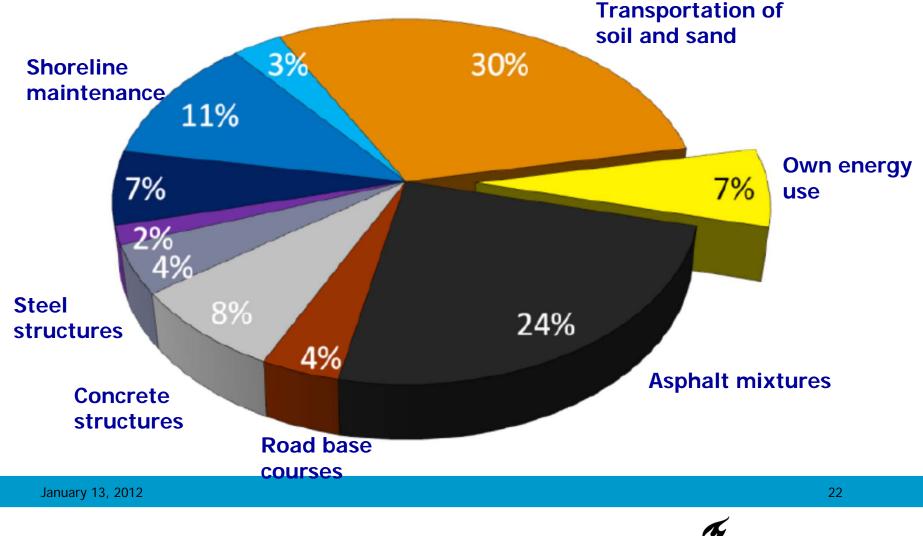
ECOLABEL for buildings


USE

BEFORE USE

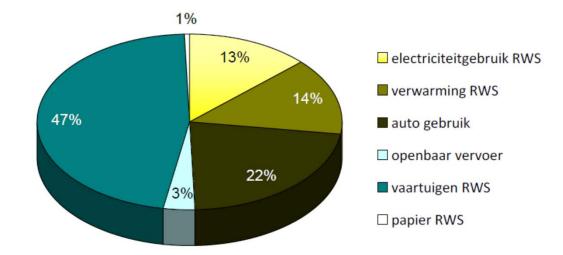
Construction End of Life stage **Product stage** Use stage **Process stage** B1 Use; installed product B2 Maintenance B3 Repair Loads B4 Replacement and B5 Refurbishment benefits **B6 Operational Energy Use** of B6.1 Operational Energy Use - heating Raw material supply On site processes Recycling / re-use recycling B6.7 perational Energy Use - cooling Deconstruction Manufacturing **EPBD** Transport **Fransport** Transport Disposal perational Energy Use - building automation and c introl B6.6 75 2 R 2 2 **B**7 **Operational Water Use** 18 Measuring **CEN TC 350** environmental JEIL

European harmonisation: CEN TC350 Sustainability of construction works



Example: Dutch government: Sustainability strategy

- Target sustainable purchasing:
 - Dutch DoT is from 2010 purchasing 100% sustainable:
 - DuboCalc (sustainable design)
 - CO₂ performance ladder)



CO₂ Footprint Division DutchDoT (0.9 Mton/year)

Carbon footprint DoT: own use

CO2 uitstoot energieverbruik

Target in CO₂ Reduction the coming decade

•	Pavements	28%
•	Earth and sand transportation	30%
•	Dredging	21%

Asphalt Use DoT (unfortunately all hot mix at the moment)

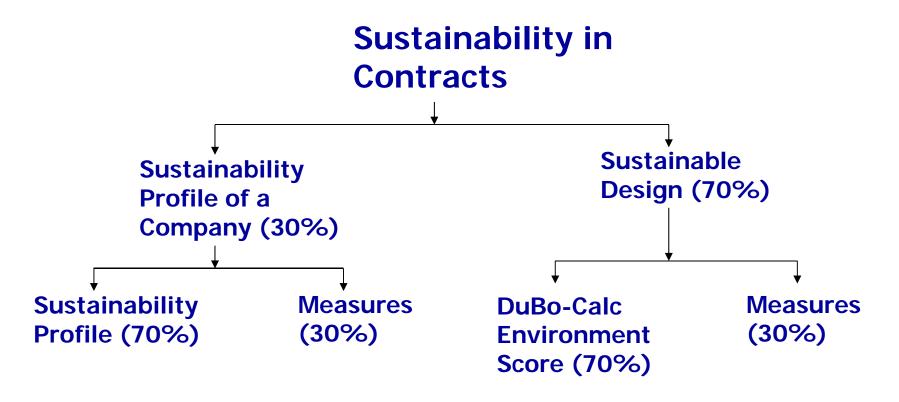
- Maintenance:
 - 550 kton PAC
 - 250 kton base course mixture
- New structures:
 - 80 kton PAC
 - 600 kton base course mixture
 - after 2014 much less

CO₂ Production Asphalt Mixtures

- 44% production and transportation raw materials
- 31% production of the asphalt mixture
- 18% transportation and laying/compacting asphalt mixture
- 7% maintenance/milling
- Do we have this information for cold mixes???

CO₂ Footprint Cement

- 56% decarbonation of limestone
- 30% burning fuels
- 8% electricity production
- 4% fuel supply
- 2% others



How is Sustainable Contracting promoted in the Netherlands?

January 13, 2012

Sustainable contracting in the Netherlands

January 13, 2012

Sustainability Profile of a Company

- What is the company's policy with respect to
 - energy use
 - energy reduction
 - communication
 - CO₂ reduction policies
 - CO₂ management in the company
- Company should not only look to itself but also to suppliers etc

DuboCalc

- Software tool to determine environmental effects of usage of materials and energy for building structures
- 10 environmentally important aspects are evaluated by means of one single indicator: the Environmental Cost Indicator

Some Aspects considered

- Acidification (SO₂ equivalent)
- Damage to Ozone layer (CFK-11 eq)
- Climate change (CO₂ eq)
- Eco-toxicity (1.4-DCB eq dichlorobenzene)
- Smog (C_2H_2 eq)

€ 4 / kg € 30 / kg € 0.05 / kg € 0.06 / kg € 2 / kg

How Calculated

- Data base of products and materials for which environmental load is determined
- Based on type and quantities of materials used ECI is calculated
- ECI is used as fictitious increase of bid

Best Options seen at the moment

•	Thin inlays	- 8%

- Rejuvenation techniques 15%
- Remix 9%
- Thinner structures 20%
- Blast furnace cement 22%
- Recycling PAC 10%
- Low temperature asphalt 5 a 10 %

Can we compare cold recycling with hot mix asphalt?_{HMA} Cold Recycling

System	* Fully recyclable* Closed-loop	equivalent for cold equivalent for cold
Materials	 * Fossil fuel based binder * Minerals aggregates * Mineral filler * Engineered chemicals 	equivalent for cold equivalent for cold, often less equivalent not necessary
Energy	* Hot asphalt mixing* Different fuel types	much lower temperature natural gas/bio-oil
Emissions	 * Different emission pattern * Application Soot, VOC, PAH * Tar? 	much less for cold I much less for cold no
Logistics	* Different distances	Probably much less for cold
Durability	* maintenance & replacemen	nts No clear models yet for cold

Important considerations

- Cold recycling needs to have available:
 - All information for an LCA, this also means:
 - Good design method to be able to compare with other designs
 - Information on service life of cold recycling solutions to support the design

24 parameters in stead of 10 as used in duboCalc in near future?

Environm. effects from LCA- prEN 15804	Resource use prEN 15804	Waste prEN15804	Output flows prEN15804
Broeikaseffect (GWP)	Renew. prim.energy (MJ)	Hazardous waste (kg)	Components for re-use
Ozonlaagaantasting (ODP)	Renew. prim. energy resources	Non hazardous waste (kg)	(kg)
	raw material (MJ)		Materials for recycling (kg)
Verzuring (AP)	Total renewable (MJ)	Radioactive waste (kg)	
Vermesting (NP)	Non renewable primary energy		Materials for energy recovery (kg)
Zomersmog (POCP)	(MJ)	Waste	
Uitputting grondstoffen	Non renew primary energy resources raw material (MJ)	NEN 8006	Exported energy (MJ)
– niet fossiel (ADP)	Total non renewable (MJ)	Dangaraus wasta (kg)	
– fossiel (MJ)	Secondary material (kg)	Dangerous waste (kg)	
	Renew. Sec. fuels (MJ)	Non-dangerous waste (kg)	
Envir. effects from LCA- NEN	Non renew. sec. fuels (MJ)		
8006	Net fresh water (m3)		
6 as above			
Humane toxicity	Resource use		
hueevt03, (2017 terr.)	NEN 8006		37
	Energy (MJ)		K
			ÍU Delft

Ja