Asphalt Pavements and the Environment

some News from the Netherlands

André A.A. Molenaar

1

Delft University of Technology

Some Statistics

2500 km main highway system

100.000 vehicles/day 15 % trucks 3.5 axles of 100 kN/truck 9 % overloaded

time slot for maintenance 21 pm – 5 am

2 % < CBR < 5 % in western part of the country

16 million inhabitants

 $\approx\!\!1.6~x$ Massachusetts and 0.5 x Maine

March 7, 2013

Design, Build, Finance and Maintain Contracts

- Large projects
- Duration contract 30 years
- Within certain boundaries has maximum freedom in selecting materials and structures
- Durability is introduced as one of the decision factors

Preferences to be taken into account in A12 LuVe project

virtual amount of money is added to initial bid if preferences are not or only partly fulfilled

- Optimum collaboration with client and information to public
 15 million €
- Hinder to traffic during construction

50

million €

Hinder to traffic during exploitation

20 million €

- Hinder to traffic on the secondary road system 15 million €
- Durable solution (minimize environmental hinder)
 15 million €

March 7, 2013

Conclusion

- Durability plays a role but Availability plays a much more important role
- Theoretically it is possible that an environmentally unfriendly solution is accepted because it maximizes availability
- However, the use of environmentally unfriendly
 products like tar-containing products is banned

Total Price

- Total price = bid + preferences
- Ceiling = € 350 million
- If total price > ceiling then bid is invalid

Outcome of the Bidding for the A12 LuVe project

Contractual Risks

Penalties one has to pay when working outside agreed time frame

Pha se	Day	Time frame (AV _{1/4h})			
Construc- tion phase		00.00- 05.00	05.00- 08.00 ≋ \$ 32	08.00- 22.00	22.00- 00.00
Construc- tion phase					

How is Sustainable Contracting promoted in the Netherlands?

March 7, 2013

Purchasing Sustainability

Sustainability Profile of a Company

- What is the company's policy with respect to
 - energy use
 - energy reduction
 - communication
 - CO₂ reduction policies
 - CO₂ management in the company
- Company should not only look to itself but also to suppliers etc

DuboCalc

- Software tool to determine environmental effects of usage of materials and energy for building structures
- 10 environmentally important aspects are evaluated by means of one single indicator being the Environment Cost Indicator

Aspects considered

- Acidification (SO₂ equivalent)
- Damage to Ozone layer (CFK-11 eq)
- Climate change (CO₂ eq)
- Eco-toxicity (1.4-DCB eq dichlorobenzene)
- Smog (C_2H_2 eq)

€ 4 / kg € 30 / kg € 0.05 / kg € 0.06 / kg € 2 / kg

How Calculated

- Data base of products and materials for which environmental load is determined
- Based on type and quantities of materials used ECI is calculated
- ECI is used as fictitious increase of bid

 You have a hard time to get your product accepted by the market if it is not in the data base

DuboCalc

- For Ministry of Transport contracts
- Provincial and City authorities (85% of the market) are still struggling with the concept
- Price is in most cases decisive factor
- Only a few DBFM contracts
- Many DB contracts
- Many have extended warranty period (5 7 years)

Preserving the Environment is a Necessity

- Reduce energy consumption
- Reduce global warming (reduce CO₂ production)
- Reduce acidity levels
- Reduce use of virgin materials
- Promote recycling
- Reduce fine dust levels
- Reduce noise levels
- Etc etc

Traffic itself is the biggest Polluter

Conclusion

- The biggest contribution of the road industry to limit pollution is by providing structures which will result in less pollution by traffic
- This implies:
 - long life pavements
 - low rolling resistance
 - low noise production
 - etc

Durable (long life) of pavements are a prerequisite for sustainable pavements

March 7, 2013

Longer average Lifetime and less Variation in Properties will reduce Traffic Hinder, Costs and Pollution

Better Quality will give Better Performance and will Reduce Polution

- We build our pavements with too much variability
- This results in:
 - premature failure
 - too early maintenance
 - need for higher maintenance budgets
 - more delays due to maintenance and rehab
 - and therefore more fumes, CO₂, energy consumption etc

Effect of reduced Variability of Porous Asphalt Concrete on Costs and Delay Hours

	10% of sections has failed after [years]	50% of sections has failed after [years]	90% of sections has failed after [years]	Mainte- nance costs	Delay hours
Currently	7	11	16	1	1
In case of reduced variability	9	13	16	0.8	0.9

March 7, 2013

Reduction of Variation starts already with proper Storage of Aggregates

March 7, 2013

RAP Sorting

March 7, 2013

Courtesy: Rasenberg Contractors

Temperature variation during production

Frequency distribution Bitumen Content PAC

March 7, 2013

Variation Void Content Porous Asphalt Concrete

Location at transverse profile width (o = edge of pavement)

March 7, 2013

Cooling of the asphalt when the paver stopped

March 7, 2013

Source: S.R. Miller, Twente University

Conclusion

- We must do a better job in producing and laying mixtures ! High and homogeneous quality is required !
- Important factors to control are a.o.:
 - workmanship
 - segregation
 - temperature
 - compaction

- We must further improve existing equipment.
- Computer controlled systems are a must (e.g. intelligent compaction)

March 7, 2013

So I asked the Dutch Asphalt Paving Contractors

- "Given these major changes in contracting, I guess your top three priorities in running your business are:
 - production quality durability"
- Their answer was:

"André you got it completely wrong, our top 10 priorities are:"

Top 10 priorities for Dutch Asphalt Paving Contractors

- 1. Production
- 2. Production
- 3. Production
- 4. Production
- 5. Production
- 6. Production
- 7. Production
- 8. Production
- 9. Production
- **10.Production**

Reality

- Big bonus is paid if work is completed earlier than agreed
- High penalty has to be paid if work is completed later than agreed

Conclusion

- Most contracts are driven by "short term availability thinking" and durability only seems to be (at best) a secondary issue
- "Durability" must start when setting up a contract. This is the clients responsibility!

Surfaces with low rolling condition contribute significantly to reduction CO_2 and NO_x emissions

- Until now confusing and conflicting information on this issue
- More in depth studies are required
- Holistic approach absolutely needed
 - fuel consumption noise reduction
 - skid resistance
 durability

- sustainability

Road Surface and Fuel Consumption

(Volvo V70) (gains to be made by modifying surface are limited)

Road surface type	Fuel consumption relative to Dense Asphalt Concrete 0/16
Dense Asphalt Concrete 0/16	0
Porous Asphalt 6/16	- 0.0 (± 3.5)
Stone Mastic Asphalt 0/6	+ 3.4 (± 3.6)
Double-layered Porous Asphalt 4/8 + 11/16*	+ 1.2 (± 3.3)
Cement Concrete, broomed transversely	+ 0.4 (± 3.4)
Cement Concrete treated with a surface epoxy durop	+ 2.7 (± 4.5)
Brick-layered pavement	+ 5.3 (± 6.6)
* New road surface; bitumen film still present	•

Fuel Consumption

- Study VTI Sweden
 - passenger car: 1% less on concrete than on asphalt
 - truck: 6% less on concrete than on asphalt
 - influencing factors: texture and deflection
- Study Japan
 - heavy duty vehicle driving at 80 km/h on highway:
 - 1.4 4.8% less on concrete than on asphalt

Congres Sevilla

March 7, 2013

CO₂ Footprint Eng Division MoT, the Netherlands (0.9 Mton/year)

CO₂ Production Asphalt Mixtures

- 44% production and transportation raw materials
- 31% production of the asphalt mixture (this is approximately 8% of total CO₂ production by MOT)
- 18% transportation and laying/compacting asphalt mixture
- 7% maintenance/milling

Quickest way to reduce CO₂ is by using less Asphalt Concrete of higher quality

- Thinner Structures and Longer Lifetime
- Better Quality

CAN WE DO THIS?

Thickness design of thinner structures with longer lifetime

- Endurance limit exists
- BUT!!! Reported Endurance Limit Values are specimen properties and NOT material properties
- Use of modified mixtures results in higher endurance limit and therefore in thinner structures

Endurance Limits at 8 Hz and 20 °C

Mixture	<i>S_{m,initial}</i> (GPa)	<i>ε_{limit}</i> (10⁻ ⁶ m/m)	
599-40 (ref)	8.9	50	
602-42 (SBS1)	10.8	80	
604-41 (SBS2)	10.1	75	

42

March 7, 2013

Benefits of Modified AC

What is required thickness to achieve tensile strain as low as endurance limit

Conclusion

 Significant savings can be made by modifying structures and selecting materials with enhanced characteristics

Conclusions

- Variability is caused many times by not optimal logistics and weak control during production
- We can get more out of our precious materials and structures by doing a better job
- We can get a longer life and reduce environmental impact by doing a better job
- Using materials with enhanced characteristics
 will significantly improve pavement life
- Using materials and structures that will reduce fuel consumption of cars is essential

Conclusions (continued)

- Holistic approach to get environmentally friendly pavements with a long life is essential.
- Optimization is needed taking into account the following factors
 - long life
 - low noise level
 - low energy use
 - skid resistance
 - reduction green house gasses

March 7, 2013

Environmentally Friendly AND Long Life Pavements

- Thinner Structures and Longer Lifetime
- Better Quality

CAN WE DO THIS? YES WE CAN!

March 7, 2013

