ISAP TECHNICAL COMMITTEES DAY

Annual meeting (2013) of

Technical Committee on Asphalt Pavements and Environment (APE)

Washington DC, OMNI Shoreham Hotel - Governors Room. January 13th, 2013

Reuse of by-products in asphalt pavements

Prof. Marco Pasetto

Dept. of Civil, Environmental and Architectural Engineering (DICEA), University of Padova (IT)

Outline

- > Alternative materials: what, why, where, how?
- Classification
- Testing
- > The Italian experience

Non-traditional/Alternative/Marginal Materials in road construction:

What?

- Non-traditional natural materials and residuary products (industrial by-products and wastes), which can be used either to replace traditional aggregates or as hydraulic binders or as fillers in bituminous coated materials
- Materials that fall "outside specifications, but which may be utilized provided special care is taken" (PIARC, 1983-1989)
- "Marginality" is related to a particular time or place and even sometimes the course in which the material is used (relativity of the definition)

Non-traditional/Alternative/Marginal Materials in road construction:

Why?

- Shortage of natural materials
- Environment and landscape protection
- Savings
- Elimination of dumps (pollution, visual impact, etc.)

Where?

- Earthworks and subgrades
- Sub-bases/foundations
- > Asphalt (layers)
- ≻ Etc.

Non-traditional/Alternative/Marginal Materials in road construction:

How?

- > Technical, economic, environmental evaluation
 - technical : direct use; quality improvement; with binder; performance-related solutions;
 - economic: direct and indirect cost of traditional aggregate; (extra)cost of non traditional materials; costs related to construction solutions;
 - environmental: damage to landscape; atmospheric and water-table pollution; etc.

Classification (PIARC) – Earthworks use

MINING AND QUARRY WASTES AND BY-PRODUCTS

Colliery waste materials (baked or unburnt) Quarry waste materials (from crushing mills, screening, etc.) Other materials (recycled concrete etc.)

METALLURGICAL WASTES AND BY-PRODUCTS

Blast-furnace slags Steel slags (BOF) Non-ferrous slags Other slags

INDUSTRIAL WASTES AND BY-PRODUCTS

Fly and bottom ash Calcium sulphate and lime wastes Sulphur wastes Other industrial wastes (bauxite, desulphurized gypsum etc.)

NON -TRADITIONAL NATURAL MATERIALS

Soft mica-schists Evolutionary schists Evolutionary marls Tuff Traditional materials of poor quality

SOILS

Clay Silt Silt-Sand Pozzolan Uniform sands Till

INDUSTRIAL BY-PRODUCTS (METALLURGICAL INDUSTRY)

Blast furnace slag Steel slag Nickel slag Copper slag Zinc slag Lead slag Ferrochromium slag

INDUSTRIAL BY-PRODUCTS (THERMAL ELECTRIC STATIONS)

Hydraulic fly ash (lignite) Non-hydraulic fly ash (other coal types) Bottom ash Boiler slag

INDUSTRIAL BY-PRODUCTS (CHEMICAL INDUSTRY)

Phosphogypsum Lime and cement kiln dust Hydrated lime by-products Carbide lime Oil shale residue Hydrocarbon refining wastes Post-refinery sewage wastes

WASTES (MINING AND QUARRYING WASTES)

Slate wastes Asbestos and bauxite mine wastes Colliery spoil China clay sand Gold and Manganese mine wastes Lead, zinc, sulphur ore tailings Stone and gravel pit refuse Stone screenings

WASTES (MUNICIPAL WASTES)

Incinerator refuse wastes Glass and ceramic wastes Plastic wastes

WASTES (INDUSTRIAL WASTES)

Ceramic and refractory wastes Cellulosic wastes Plastic wastes Tyres and rubber Resin Bark and sawdust

WASTES (DEMOLITION WASTES)

Milled pavements Stones and bricks of demolished buildings Concrete and reinforced concrete

WASTES (DREDGING MUDS)

Testing

- Generally, the same as used for traditional materials (see recent Technical Standards, e.g. EN 13242, 13043, etc.)
- Specific attention to degradability, free lime content, water absorption, frost susceptibility (swelling, etc.)
- > High attention to chemical properties (leaching, eco-toxicity, etc.)

... but also...

> (New) functional, performance based test methods

are needed.

The Italian experience

Electric Arc Furnace (EAF) slag Spent foundry sand Municipal Solid Waste Incinerator ash C&D aggregate Glass wastes R.A.P. Crumb rubber Plastic wastes Etc.

In ... Embankments and subgrades Foundations / Sub-bases Road bases Base courses Wearing courses

ISAP TC/APE WG6 By-products and Secondary Materials Recycling in Asphalt Pavements Reuse of by-products in asphalt pavements

ISAP TC/APE WG6 By-products and Secondary Materials Recycling in Asphalt Pavements Reuse of by-products in asphalt pavements

The Italian experience

- 3 steps
- Laboratory testing /materials characterization
- Field testing
- Construction

The Italian experience

Background

- Recent development
- No utilization know-how
- Infrequent applications
- Not updated Specifications and Standards
- Law constraints
- > Aversion from Road agencies, Public Administrations and Contractors
- Unfavourable public opinion
- Magistrates' inquisitiveness

Physical and Mechanical properties	Crushed Limestone	Natural sand	EAF Type A	EAF Type B	RAP aggregates	WF sand	MSWI ash
Grain dry density (g/cm ³)	2.80	2.76	3.97	4.14	2.53	2.76	2.59
Grain bulk density (g/cm ³)	2.72	2.55	3.87	3.92	2.36	2.64	2.53
Plasticity Index (-)	-	0	0	0	0	0	0
Shape Index (%)	2 to 4	-	8	10	10	15	36
Flakiness Index (%)	2 to 5	-	6	12	7	5	39
Equivalent in sand (%)	56	64	79	83	82	27	45
Los Angeles coefficient (%)	23 to 30	-	7	15	27	-	44

- ✓ Four different types of mixtures:
 - 1. Without EAF slags (natural aggregate)
 - 2. With EAF slags (25 to 45%)
- ✓ Four bitumen contents:
 - 1. (4.5 to 6%) for AWC, PA and BBM
 - 2. (5.5 to 7%) for SMA
- ✓ Marshall Test
- ✓ Indirect Tensile Strength Test
- ✓ Stiffness Modulus Test (30°C)

BBM asphalt base course, **AWC** asphalt wearing course, **SMA** Stone Mastic Asphalt, **PA** porous asphalt with EAF slag

n = with natural aggregate

Mix	OBC [%]	MS [daN]	ΔMS [%]	MQ [daN/mm]	ΔMQ [%]	ITs [MPa]	∆ITs [%]	S _m [MPa]	ΔS _m [%]
BBM	4.5	2,637	. 24	730	. 10	1.10	. 01	1,669	. 10
BBM _n	4.5	1,967	+34	613	+19	0.91	+21	1,414	+10
AWC	5.0	2,901	. 60	438	. 24	0.74	. 3	1,107	. 0
AWC _n	5.0	1,713	+69	328	+34	0.72	- +3	1,021	+0
SMA	5.5	1,533	. 2	360	. 10	1.13	. 4 5	1,622	. 20
SMA _n	5.5	1,500	+2	328	+10	0.98	- +15	1,351	+20
PA	5.0	868	. 7	260	. 70	0.62	. ว	1,004	. 0
PA _n	5.0	809	+1	153	+/U	0.60	- +J	932	+0

BBM asphalt base course, **AWC** asphalt wearing course, **SMA** Stone Mastic Asphalt, **PA** porous asphalt with EAF slag n = with natural aggregate

Repeated Load Axial Test (RLAT)

WITH CONFINEMENT EN 12697/25 – Method A

>Loading time: 1 s
>Unloading time: 1 s
>Samples (Cylindrical) Φ = 150mm, H = 60mm
>Temperatures: 40°C
>Stress level: 100kPa
>Loading cycles: 3600

Permanent deformation reduction: BBM 10%, AWC 32%, SMA 21%, PA 28%

BBM asphalt base course, **AWC** asphalt wearing course, **SMA** Stone Mastic Asphalt, **PA** porous asphalt with EAF slag n = with natural aggregate

Indirect Tensile Stiffness Modulus (ITSM) EN 12697/26 - Annex C

- ✓ Test Temperatures: 0°C, 10°C, 20°C
- ✓ Rise Time: 50 ms
- ✓ Deformation control procedure
 (5 microns)

BBM asphalt base course, **AWC** asphalt wearing course, **SMA** Stone Mastic Asphalt, **PA** porous asphalt with EAF slag

ISAP TC/APE WG6 By-products and Secondary Materials Recycling in Asphalt Pavements Reuse of by-products in asphalt pavements

The Italian experience, step 1 (lab testing)

Indirect Tensile Fatigue Test (ITFT) UNI EN 12697/24 - Annex E

- ✓ Repeated (<u>Destructive</u>) Indirect Tensile Test
- ✓ Impulsive loading wave
- ✓ Test Temperatures: 20°C
- ✓ Stress control procedure (400, 500, 600 kPa)

ε6: BBM 37 μm/m, AWC 49 μm/m, SMA 36 μm/m, PA 30 μm/m

BBM asphalt base course, **AWC** asphalt wearing course, **SMA** Stone Mastic Asphalt, **PA** porous asphalt with EAF slag

Moisture Resistance – Indirect Tensile Strenght Test (ITT) CNR 149/92

- ✓ <u>Destructive</u> Indirect Tensile Test
- ✓ Constant strain rate: 0.85 mm/s
- ✓ Test Temperatures: 25°C
- ✓ Dry & Wet conditions (7 days in water)

ITs at 25°C TSR at 25°C

BBM asphalt base course, **AWC** asphalt wearing course, **SMA** Stone Mastic Asphalt, **PA** porous asphalt with EAF slag

ISAP TC/APE WG6 By-products and Secondary Materials Recycling in Asphalt Pavements Reuse of by-products in asphalt pavements

The Italian experience, step 2 (field testing)

MSWI bottom ash

MSWI bottom ash

- ✓ 100 m (2 different pavements, with/without CBGM sub-base)
- \checkmark 2,350 heavy vehicles in 1 year
- ✓ 71,130 tons (max weight 46 tons)
- ✓ Tests on materials (bituminous and cement bound mixes)
- ✓ FWD and PLFWD
- ✓ IRI
- ✓ Coring
- ✓ Micro/macro-texture (skid test, height in sand)
- ✓ Drainage
- \checkmark Water analysis

> Applications concerning

- ✓ embankments (1)
- \checkmark hydraulically bound foundations (2)
- \checkmark cement and bituminous draining layers (3)
- \checkmark bituminous wearing courses, base courses, road bases (4)

with

- ✓ EAF slag (1) (2) (3) (4)
- \checkmark Spent foundry sand (2) (3)
- \checkmark C&D aggregate (1) (2)
- ✓ crumb rubber (4)
- ✓ RAP (4)

Mestre-Venice ring-road

✓ 36 km motorway, 3 lanes x 2 separate carriageways

Padova Northern by-pass

✓ 7 km major road, 2 lanes x 2 separate carriageways

73,000 m³ capping layer : sand ->
lime stabilization of soil
102,000 m³ embankment: natural aggregate -> lime stabilization of soil
10,000 m³ sub-base: unbound mixtures -> 14,000 m³ CBGM (slag+C&D+foundry sand)
36 cm bituminous layers -> 23 cm bituminous layers with EAF slag

> National Road SS 246 Var. Montecchio M.

✓ 10 km major road, 2 lanes x 2 separate carriageways

150,000 m² capping layer sub-base: unbound mixtures -> 14,000 m³ CBGM (slag+C&D+foundry sand)

27 cm bituminous layers -> 19 cm bituminous layers with EAF slag

Conclusions

- ✓ Several marginal materials show physical, geotechnical and mechanical characteristics that make them suitable for producing asphalt mixtures as well as CBGM and unbound mixes. Their use has been also tested in cold recycling.
- ✓ New tests could be useful in order to analyze the performances.
- ✓ Field tests are useful in order to understand the critical aspects related to the utilization of these aggregates in real pavements.
- ✓ In different countries the alternative materials are being used in road construction.
- \checkmark Specifications and technical Standards are needed.
- Leaching and eco-toxicity should be continuously monitored before and after any application.

ISAP TC/APE WG6 By-products and Secondary Materials Recycling in Asphalt Pavements Reuse of by-products in asphalt pavements

Thank You,

Marco Pasetto marco.pasetto@unipd.it

