

INTRODUCTION

- Recycling of asphalt pavements extensively used over the world.
- Asphalt roofing shingles also contain asphalt binder.
- Minnesota DOT has sponsored several research studies on recycling shingles
- In 1996, Mn/DOT adopted specification allowing up to 5% Manufacturer Waste Shingle Scrap (MWSS).
- Recent research showed that > 90% roofing waste in Twin-Cities represents potentially recyclable Tear-Off Shingle Scrap (TOSS).
- TOSS asphalt binder has considerably aged, becoming significantly more brittle at low temperatures.
- At the beginning of 2010, Mn/DOT released a draft specification proposing a limit of up to 5% for TOSS.

Washington January - 23rd 2011

- Recent research focused on low temperature properties of asphalt mixtures containing different amounts of RAP, MWSS and TOSS.
- Study performed in conjunction with work conducted by MnDOT Objectives
- Investigate influence of RAP and RAS addition on creep stiffness, *m*-value, thermal stress and critical temperature.
- Obtain and compare spatial information of internal structure of asphalt mixtures and determine noticeable changes
- Back-calculate binder creep stiffness using Micromechanical and Analogical Models
- Evaluate environmental impact of shingles recycling

Washington January - 23rd 2011

	Mix	Re	cycled M	aterial	Bind	er PG	VMA	VFA	Air Voids
ID	Description	RAP (%)	TOSS (%)	MWSS (%)	58-28	52-34	%	%	%
1	PG 58-28 Control	0	0	0	х		15.9	76.6	3.7
2	15% RAP	15	0	0	х		15.2	72.9	4.1
3	25% RAP	25	0	0	х		15.3	73.0	4.1
4	30% RAP	30	0	0	х		15.0	45.4	3.7
5	15% RAP 5% MWSS	15	0	5	х		15.6	75.0	3.9
6	15% RAP 5% TOSS	15	5	0	х		15.9	77.2	3.6
7	25% RAP 5% TOSS	25	5	0	х		15.4	73.9	4.0
8	25% RAP 5% MWSS	25	0	5	х		14.8	72.5	4.1
9	25% RAP 5% TOSS	25	5	0		х	15.8	71.8	4.5
10	25% RAP 5% MWSS	25	0	5		х	15.0	73.5	4.0
11	25% RAP 3% TOSS	25	3	0	х		15.5	75.3	3.8
12	25% RAP 3% MWSS	25	0	3	х		15.3	73.7	4.0
13	15% RAP 3% TOSS	15	3	0	х		16.1	79.4	4.0
14	15% RAP 3% MWSS	15	0	3	х		16.1	73.8	4.2
15	10% RAP 5% TOSS	10	5	0	х		16.6	75.0	4.2
16	15% RAP 5% TOSS*	15*	5	0	х		16.7	77.2	3.8
17	5% TOSS	0	5	0	x		16.6	76.3	4.0

ENTPE Trai	nsformation	
$ au_{binder} = 1$	$10^{-lpha} au_{mix}$	<u> </u>
$S_{\it binder}(t)$	$= S_{mix}(t/10^{-\alpha}) \frac{E_{\infty_binder}}{E_{\infty_mix}}$	E _∞
		k, δ
$S_{mix}(t) \ S_{binder}(t) \ E_{\infty_mix} \ E_{\infty_binder}$	creep stiffness of mixture, creep stiffness of binder, glassy modulus of mixture, glassy modulus of binder,	h
$ au_{binder}$	characteristic time of binder,	
τ_{mix}	regression parameter which may depend	on mix design
t a	time.	on mix design,
Washington January - 23 rd 2011	1	

ENVIRONMENTAL ANALYSIS

Life Cycle Assessment (LCA)

- 1) Goal Definition and Scoping;
- 2) Inventory Analysis;
- 3) Impact Assessment;
- 4) Interpretation
- First two steps considered
- Used Pavement Life-Cycle Assessment Tool for Environmental and Economic Effects (**PaLATE**), an Excel spreadsheet program
- Determined environmental effects of using different quantities of shingles and RAP in pavement

Washington January - 23rd 2011

ENVIRONMENTAL ANALYSIS

Assumptions

- Shingles contribute about 30% asphalt binder of their weight to the mix design
- Use of shingles does not significantly affect performance of asphalt pavement

Calculations

• The potential energy use (MJ) and global warming potential (GPW) (carbon dioxide emissions, Mg of CO₂) for a 1 mile long and 48 foot wide pavement constructed with 5 inches of asphalt mixture and 6 inches of aggregate base

Washington January - 23rd 2011

