Visual assessment for segregation

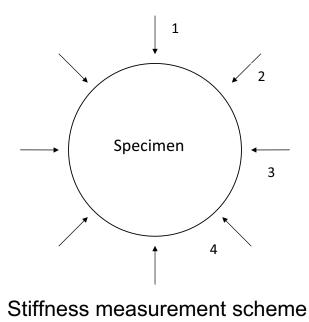
Large RAP Mixture – 4 minutes mixing time


Visual assessment for segregation

Large RAP Mixture – 8 minutes mixing time

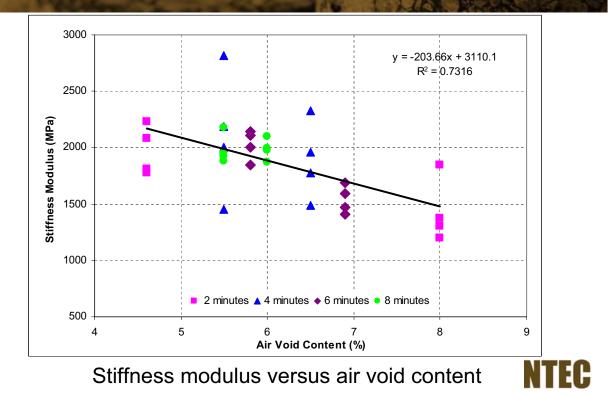
Visual assessment for segregation

Small RAP Mixture – 1 minutes mixing time



Visual assessment for segregation

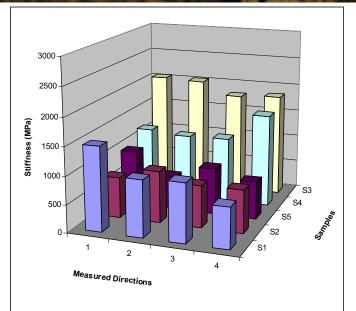
Small RAP Mixture - 8 minutes mixing time


NTEC

Mechanical assessment

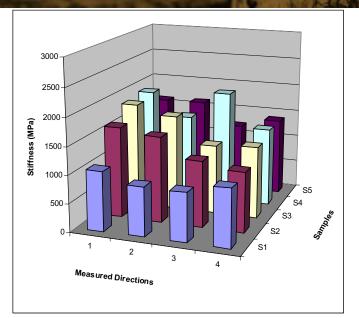
Mixing		Air	Stiffness in Different Directions			Mean	COV	
Time	Samples	void	(Mpa)			Stiffness	(%)	
(mins)		Content	1	2	3	4	(MPa)	
		%	1	2	3	4		
2	1	4.6	1813	2232	1778	2078	1975	11
	2	8	1306	1197	1374	1844	1430	20
4	1	5.5	1452	2816	2004	2183	2114	27
	2	6.5	2324	1959	1774	1491	1887	18
6	1	6.9	1690	1591	1408	1472	1540	8
	2	5.8	2147	2106	2002	1850	2026	7
8	1	6	1977	2098	1999	1873	1987	5
	2	5.5	1924	1950	1881	2175	1983	7

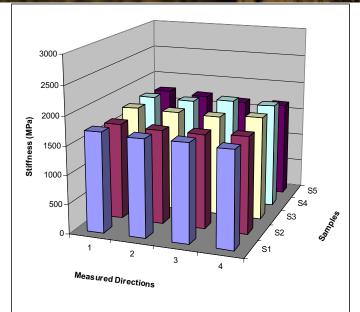
Stiffness versus different RAP/superheated virgin aggregate mixing duration



Mechanical Assessment

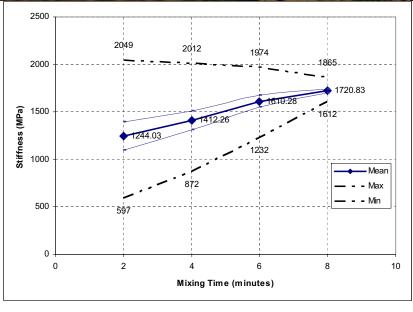
Mixing time	Mean Stiffness	Standard	Coefficient of	
(minutes)	(MPa)	Deviation	Variation (%)	
2	1702	374	22	
4	2000	449	22	
6	1783	286	16	
8	1984	105	5	


Mean stiffness versus RAP/superheated virgin aggregate mixing duration

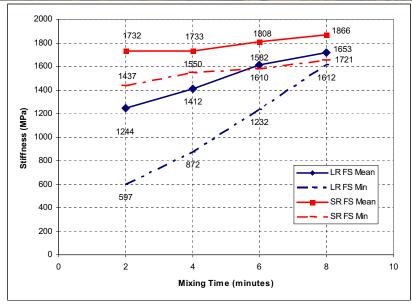


Stiffness versus core location and measuring direction of LR FS-2 mixture **NTEC**

Mechanical Assessment

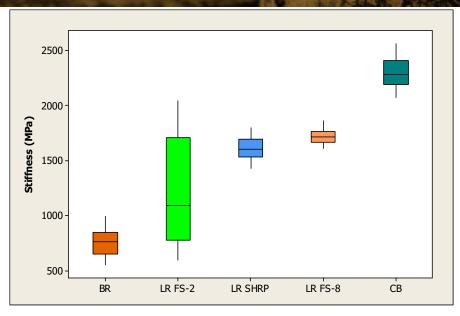


Stiffness versus core location and measuring direction of LR FS-4 mixture **NTEC**

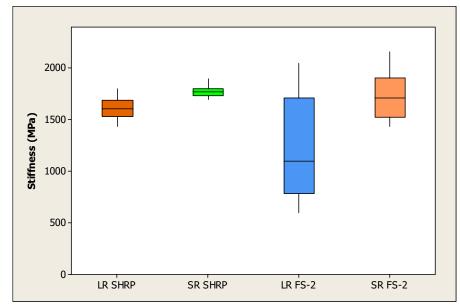


Stiffness versus core location and measuring direction of LR FS-8 mixture **NTEC**

Mechanical Assessment



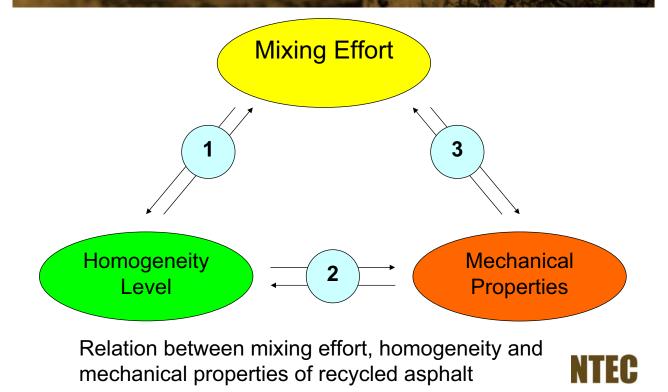
Stiffness versus mixing time of Large RAP Field Simulated Mixtures


Stiffness ranges versus mixing time of both Large and Small RAP mixtures manufactured by Field Simulated Methods

Mechanical Assessment

Inter-quartile stiffness ranges of control and LR Mixtures manufactured by different methods

Inter-quartile stiffness ranges of SHRP mixtures and FS-2 mixtures



<section-header>

Inter-quartile stiffness ranges of control and SR Mixtures manufactured by different methods

Parameter relationship

Thank you very much!

Literature Review

- Design
 - Viscosity of blend (RAP and virgin binder) estimation
 - Assumption: complete (100%) blending between RAP and virgin binder
 - How to estimate: by viscosity mixing equations
 - Accuracy: approximately 30% difference

NTEC

Viscosity Mixing Equations

Arrhenius (1887)

$$\ln(\eta_{mix}) = x_1 \ln(\eta_1) + x_2 \ln(\eta_2)$$

Nissan & Grunberg (1949)

$$\ln(\eta_{mix}) = x_1 \ln(\eta_1) + x_2 \ln(\eta_2) + x_1 x_2 G_{12}$$

Epp (1977)

$$\ln(\ln(\eta_{mix})) = x_1 \ln(\ln(\eta_1)) + x_2 \ln(\ln(\eta_2))$$

- $\eta_{\it mix}$ Viscosity of the blend
- $\eta_1 \ \eta_2$ Viscosity of RAP and virgin binder
- $x_1 x_2$ Volume percentages of two liquids
- G_{12} The material parameter

Laboratory Evaluation of Mix Properties

Specimen Preparation

- RAP size less than 20 mm and completely dried
- RAP is preheated at 110°C for 2 hours
- RAP is then mixed with virgin materials (binder and aggregate) at mixing temperature for 2 minutes
- The mix is then compacted

Testing

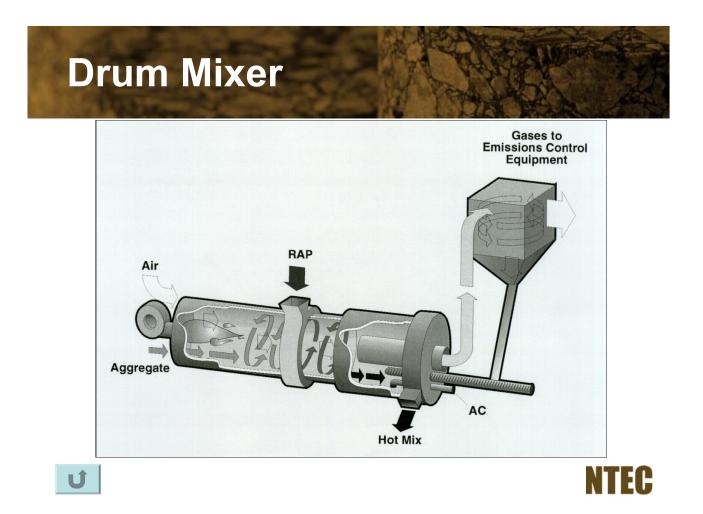
- Fatigue
- Permanent Deformation
- Stiffness
- Moisture sensitive test

NTEC

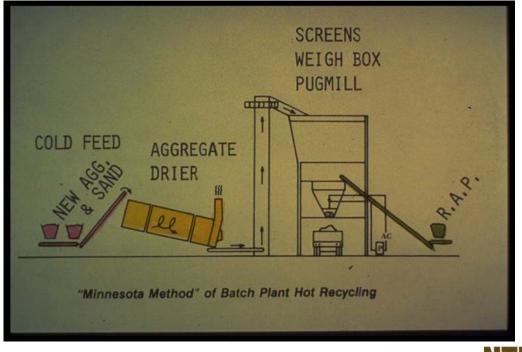
Recycled Hot Mix Asphalt Production

Production Equipment

- Drum Mixer
- Batch Plant Facility


Material

- Wide Variety of <u>RAP size</u>
- Moisture contents vary from 3 to 8%


Production Mechanism

- RAP (ambient temperature) is mixed with superheated virgin aggregate for 2 minutes
- The Superheat temperature is estimated based on the percentage of RAP
- The blend is mixed with virgin binder for maximum 1 minute

Batch Plant Facility

RAP sizes

State	Max. RAP % - Batch Plants			Max. RAP % - Drum Plants			Top Size	
State	Base	Binder	Sunfac e	Base	Binder	Sunface	for RAP	
Alabama	40	40	15	50	50	15	2 in	
Alaska	-	-	-	-	-	-	-	
Arizona	30	30	30	30	30	30	15 in	
Aikansas	70	70	70	70	70	70	3 in	
California	50	50	50	50	50	50	2 in	
Colorado	15	15	15	15	15	15	15	
Connecticut	40	40	40	40	40	40	2 in	
Delaware	35	35	25	50	50	30	2 in	
Florida	60	50	None	60	50	None	Specs	
Georgia	25	25	25	40	40	40	2 in	
Hawa ii	30	None	None	40	None	None	1.5 in	
Idaho	Open	Open	Open	Open	Open	Open	2 in	
Illinois	50	25	15	50	25	15	Specs	
Indiana	50	50	20	50	50	20	2 in	
Iowa	Open	Open	Open	Open	Open	Open	15 in	
Kansas	50	50	50	50	50	50	2 in	
Kentucky	30	30	30	30	30	30	Specs	
Louisiana	30	30	None	30	30	None	2 in	
Maine	40	40	None	40	40	None	lin	
Maryland	Open	Open	Limit	Open	Open	Limit	Specs	
Massachusetts	20	20	10	40	40	10	- 75 in	
	50	20 50	50	40 50	40 50	50		
Michigan Minnesota	59	50	30	50	50	30	Specs 3 in	
	30	30	15	30	30	15	2 in	
Mississippi Missouri	50	50	50	50	50 50	50	⊿n 15in	
Intesouri	50			50			15 m	
Montana	50	50	10	50	50	10	2 in	
Nebraska	Not Used	Not Used	Not Used	Open	Open	Open	2 in	
Nevada	50	50	15	30	30	15	15 in	
New	35	35	15	50	50	15	Specs	
Hampshire	25	25	10	25	25	10	2 in	
New Jersey								

NTFC

Ú

Superheat Temperature for Virgin Aggregate

Theory

• The amount of heat (Cutnell and Johnson, 2004) required to raise the temperature of a mass is

$$Q = mc(T_2 - T_1)$$

 The amount of heat required to raise the RAP at ambient temperature to the mixing temperature is equal to the amount of heat dispersed from virgin aggregate so the temperature drops from superheated to mixing value

Superheat Required (°F)						
240°F Mix	260°F Mix	280°F Mix	300°F Mix			
269	291	313	335			
274	296	318	340			
279	301	323	345			
284	306	328	350			
289	311	333	355			
294	316	338	360			
292	317	342	367			
303	328	353	378			
314	339	364	389			
325	350	375	400			
336	361	386	411			
347	372	397	422			
324	352	330	408			
343	371	599	427			
362	390	418	446			
381	409	437	465			
400	428	456	484			
419	447	475	503			
366	397	430	463			
424	426	459	492			
453	455	488	521			
482	484	517	550			
511	513	546	579			
540	542	575	608			
420	460	500	540			
464	504	544	588			
508	548	588	628			
552	592	632	672			
596	636	676	716			
640	680	720	760			
	640	640 680				

RAP preheating temperature required in Drum Mixer (Brock and Richmond, 2005)

Specimen Preparation Procedure

Modified Method

- Virgin Aggregate is superheated at 215°C for at least 8 hours
- RAP (at ambient temperature) is mixed with superheated virgin aggregate for 2, 4, 6, 8 minutes
- The blend is mixed with virgin binder in mixer conditioned at 135°C for 2 minutes

SHRP method

- Virgin aggregate is heated at 150°C for at least 8 hours
- RAP is heated at 110°C for 2 hours
- Conditioned RAP, virgin aggregate and binder are mixed in the mixer conditioned at 135°C for 2 minutes

NTEC