

Multi-scale analysis of warm-mix asphalt with electric arc furnace steel slag

Emiliano Pasquini, Ph.D. emiliano.pasquini@unipd.it

S#V

Bari

Trieste

Ancona

UniPD – Roads, Railways & Airports Research Group

Torino

Group Leader Marco Pasetto Full Professor

Emiliano Pasquini Assistant Professor

Slide - 2

Emiliano Pasquini, Ph.D.

Emiliano Pasquini – Short CV

- (2005) Master Thesis dissertation: "Performance characterization of grids for road pavements reinforcement", Polytechnic University of Marche (Ancona, Italy)
- (2009) Ph.D. dissertation: "Advanced characterization of innovative environmentally friendly bituminous mixtures", Polytechnic University of Marche (Ancona, Italy)
- (2009/15) Research Associate (Polytechnic University of Marche, University of Padua)
- (from 2015) Assistant Professor at University of Padua (Padua, Italy)
- (from 2017) National (Italian) Scientific Qualification to function as Associate Professor
- lecturer at the National Advanced School of Public Works (ENSTP), Yaoundé, Cameroun
- member of the Scientific Committee of International Conferences
- reviewer for 19 International Journals
- more than 40 publications in International Journals and Conferences (2 awards)

Research Gate profile:	http://www.researchgate.net/profile/Emiliano_Pasquini
ResearcherID profile:	http://www.researcherid.com/rid/G-4423-2014
ORCID profile:	http://orcid.org/0000-0001-8448-7140
GoogleScholar profile:	https://scholar.google.it/citations?user=RUu37lcAAAAJ&hl=it

Outline

- I. Introduction
- II. Research Objective and Approach
- III. Experimental Plan
- IV. Materials
- V. Methodologies and Results
- VI. Conclusions
- **VII.** Further Studies

Outline

I. Introduction

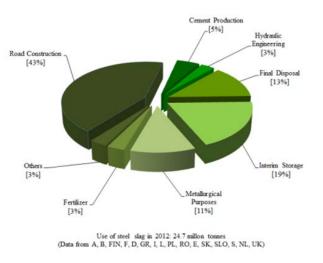
- II. Research Objective and Approach
- III. Experimental Plan
- IV. Materials
- V. Methodologies and Results
- VI. Conclusions
- VII. Further Studies

Introduction

Steel slag in asphalt mixtures

- Selected UniPD publications (about 30 papers since 1990)
 - i. M. Pasetto, N. Baldo (2010) Experimental evaluation of high performance base course and road base asphalt concrete with electric arc furnace steel slags
 - ii. M. Pasetto, N. Baldo (2011) Mix design and Performance Analysis of Asphalt Concretes with Electric Arc Furnace Slag
 - iii. M. Pasetto, N. Baldo (2012) Fatigue Behavior Characterization of Bituminous Mixtures made with Reclaimed Asphalt Pavement and Steel Slag
 - iv. M. Pasetto, N. Baldo (2012) Performance comparative analysis of stone mastic asphalts with electric arc furnace steel slag: a laboratory evaluation
 - v. M. Pasetto, N. Baldo (2012) Fatigue Performance of Asphalt Concretes with RAP aggregates and Steel Slags
 - vi. M. Pasetto, N. Baldo (2012) Fatigue Characterization of Asphalt Rubber Mixtures with Steel Slags
 - vii. M. Pasetto, N. Baldo (2013) Fatigue performance of asphalt concretes made with steel slags and modified bituminous binders
 - viii. M. Pasetto, N. Baldo (2014) Resistance to Permanent Deformation of Base Courses Asphalt Concretes made with RAP aggregate and Steel Slag
 - ix. M. Pasetto, N. Baldo (2014) Fatigue performance and stiffness properties of Stone Mastic Asphalts with steel slag and coal ash
 - x. M. Pasetto, N. Baldo (2014) Rutting resistance of Stone Mastic Asphalts with steel slag and coal ash

Emiliano Pasquini, Ph.D.



Introduction

Steel slag in asphalt mixtures

- Steel slag is a high quality crushed product, with a black-color stone appearance, characterized by high strength and rough texture
- Steel slags are able to provide increased structural performances (stiffness and rutting resistance) and skid resistance allowing both saving natural resources and re-using industrial waste

http://www.euroslag.com/products/statistics/2012/

Introduction

Steel slag in asphalt mixtures

- Extensive use mainly limited by the high bulk density of such material than natural aggregates (higher transportation costs)
- The absorption is often high leading to more asphalt binder required
- The risk of groundwater pollution by elution should be assessed
- Steel slag could be subjected to expansion due to hydration of free lime or magnesium oxide

Introduction

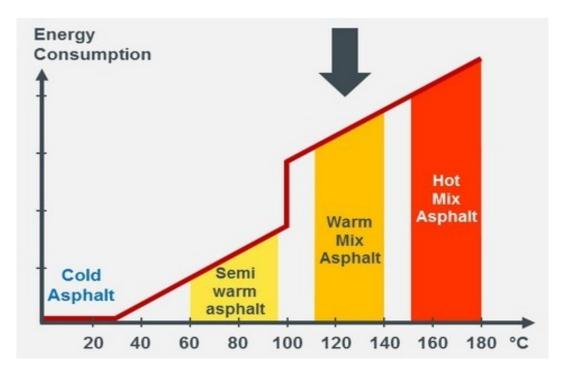
Steel slag in asphalt mixtures

EN 13043: "Aggregates for bituminous mixtures..."

 <u>Manufactured</u> aggregate aggregate of mineral origin resulting from an industrial process involving thermal or other modification

	Nr.	Source	Sub- number	Specific material	History of use	Special requirements in standard	Additional requirements identified for inclusion	
4			D1	Granulated blast furnace slag (GBS) (vitrified)	No	-	-	volume stability
X			D2	Air-cooled blast furnace slag (ABS) (crystallized)	Yes	Yes	No	
ne		Iron and steel	D3	Basic oxygene furnace slag (converter slag, BOS)	Yes	Yes	No	
Annex	D	industry	D4	Electric arc furnace slag (from carbon steel production, EAF C)	Yes	Yes	No	
			D5	Electric arc furnace slag (from stainless/high alloy steel production, EAF S)	Yes	Yes	No	
			D6	Ferrochromium slag	Yes	Yes	No	

Emiliano Pasquini, Ph.D.



Introduction

Warm Mix Asphalt (WMA)

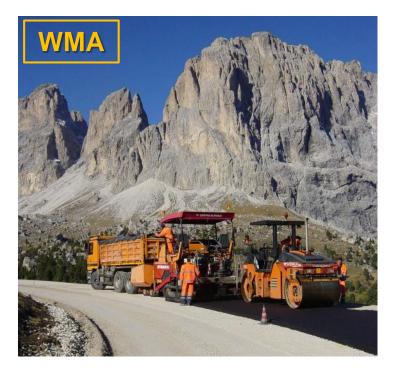
 WMA is a modified asphalt concrete which can be produced, applied and compacted at lower temperatures (100–140 °C) than HMA

Emiliano Pasquini, Ph.D.

Introduction

Warm Mix Asphalt (WMA)

 WMA is a modified asphalt concrete which can be produced, applied and compacted at lower temperatures (100–140 °C) than HMA



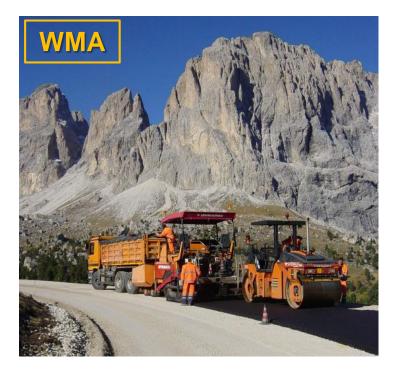
Introduction

Warm Mix Asphalt (WMA)

 WMA is a modified asphalt concrete which can be produced, applied and compacted at lower temperatures (100–140 °C) than HMA

- Reduced energy consumption
- Reduced gas and fumes emissions
- Lower production costs
- Better working environment

- Longer hauling distances
- Extended construction periods
- Reduced binder aging
- Early traffic opening



Introduction

Warm Mix Asphalt (WMA)

 WMA is a modified asphalt concrete which can be produced, applied and compacted at lower temperatures (100–140 °C) than HMA

- Lack of consolidated experience
- Costs of warm products
- Plant modification
- Choice of the technology
- Lack of technical specifications

- Higher rutting potential
- Coating and bonding problems
- Reduced interface shear strength
- Greater moisture susceptibility

Introduction

Warm Mix Asphalt (WMA)

- Specific technologies (additives and/or water injection systems)
- Many different products available on the market

Main categories:

- Organic (wax) WMA additives
- Foaming WMA processes (water-based or water-containing)
- Chemical WMA additives

Introduction

Warm Mix Asphalt (WMA)

- <u>WMA chemical additives</u> are usually formed by a package of products (emulsifiers, surfactants, polymers, additives, adhesion promoters)
- Lower mixing and compaction temperatures due to the reduced friction at the interface between bitumen and aggregates

Outline

I. Introduction

II. Research Objective and Approach

- III. Experimental Plan
- IV. Materials
- V. Methodologies and Results
- VI. Conclusions
- VII. Further Studies

Emiliano Pasquini, Ph.D. Department of Civil, Environmental and Architectural Engineering ICEA – University of Padua

Resarch Objective and Approach

What's new?

- Research approach
 - ✓ Multi-scale analysis (bitumens, mastics, mixtures)

Warm technology Chemical tensoactive additive

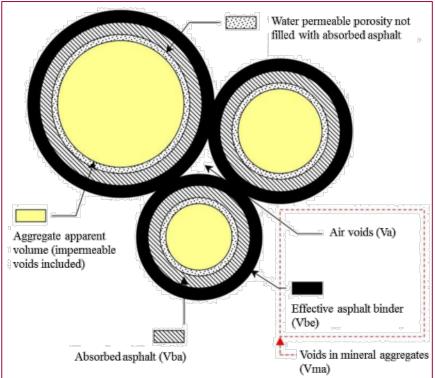
EAF steel slag ✓ Higher fine fraction (0/4 mm) content

- Methods
 - Original tests and/or data analysis

Emiliano Pasquini, Ph.D. Department of Civil, Environmental and Architectural Engineering ICEA – University of Padua

Resarch Objective and Approach Goal

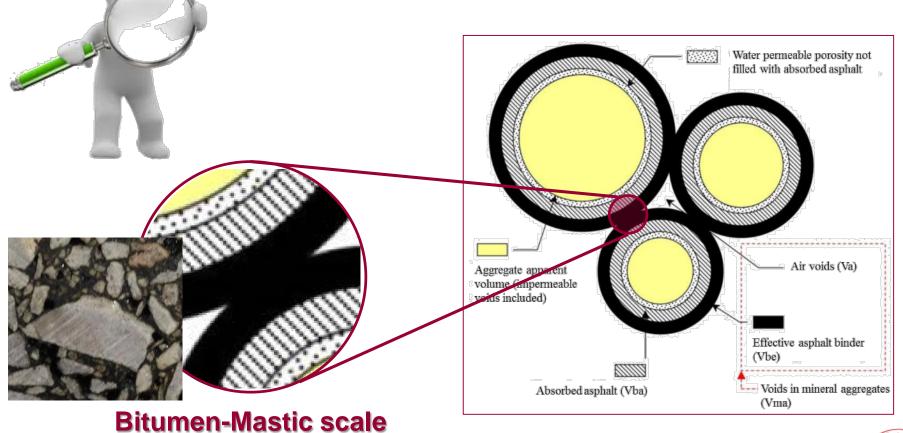
- Feasibility of using EAF steel slag (fine fraction included) as aggregate in dense graded WMA mixes
- Influence of the warm chemical additive on the binder and mixtures properties
 - Workability
 - Physical-chemical affinity
 - Midrange and high service temperature properties


Resarch Objective and Approach

Multi-scale analysis

Asphalt concrete

Mixture Scale



Resarch Objective and Approach

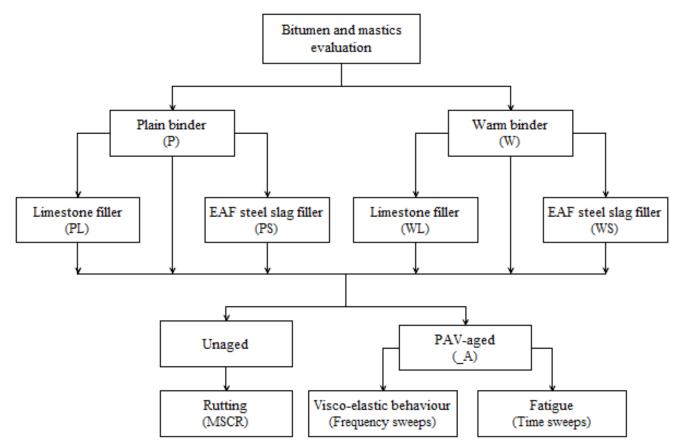
Multi-scale analysis

Emiliano Pasquini, Ph.D. Department of Civil, Environmental and Architectural Engineering ICEA – University of Padua

Outline

- I. Introduction
- II. Research Objective and Approach
- III. Experimental Plan
- IV. Materials
- V. Methodologies and Results
- VI. Conclusions
- VII. Further Studies

Emiliano Pasquini, Ph.D. Department of Civil, Environmental and Architectural Engineering ICEA – University of Padua

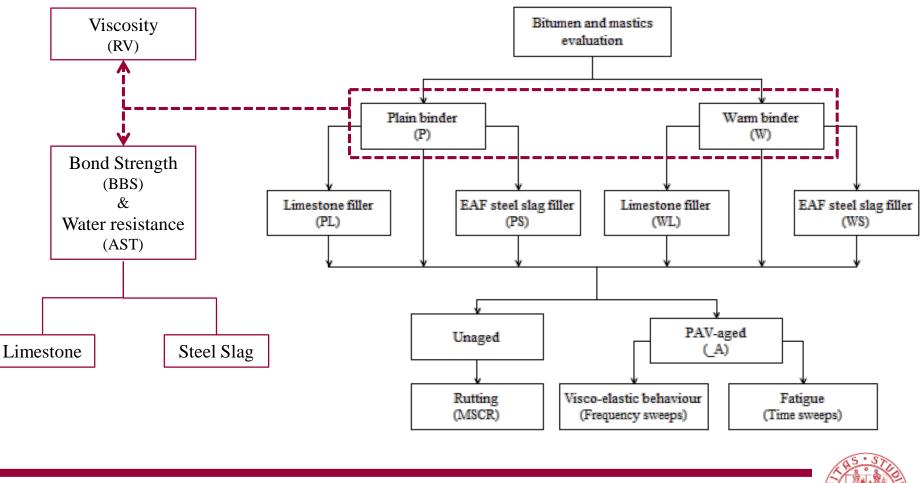


Experimental Plan

Bitumen-Mastic scale

Emiliano Pasquini, Ph.D.

Department of Civil, Environmental and Architectural Engineering ICEA – University of Padua



Slide - 23

Experimental Plan

Bitumen-Mastic scale


Emiliano Pasquini, Ph.D.

Experimental Plan

Mixture scale

Emiliano Pasquini, Ph.D.

Department of Civil, Environmental and Architectural Engineering ICEA – University of Padua

Outline

- I. Introduction
- II. Research Objective and Approach
- III. Experimental Plan
- IV. Materials
- V. Methodologies and Results
- VI. Conclusions
- VII. Further Studies

Materials

Bitumen-Mastic scale

- 35/50 penetration grade bitumen
- Commercial chemical WMA additive (water-free liquid product containing surface active agents) dosed at 0.5% by weight of binder
- Limestone and EAF steel slag filler

Materials

Bitumen-Mastic scale

- Plain and warm-modified bitumens
- Four mastics at a constant filler/bitumen volume ratio (27% filler and 73% binder) prepared at 150°C
- Unaged and long-term aged (PAV) conditions

Material code	Filler type	Bitumen Type	Bitumen aging
Р	-	Plain (hot) bitumen	unaged
P_A	-	Plain (hot) bitumen	PAV-aged
PL	Limestone	Plain (hot) bitumen	unaged
PL_A	Limestone	Plain (hot) bitumen	PAV-aged
PS	EAF steel slag	Plain (hot) bitumen	unaged
PS_A	EAF steel slag	Plain (hot) bitumen	PAV-aged
W	-	Warm bitumen	unaged
W_A	-	Warm bitumen	PAV-aged
WL	Limestone	Warm bitumen	unaged
WL_A	Limestone	Warm bitumen	PAV-aged
WS	EAF steel slag	Warm bitumen	unaged
WS_A	EAF steel slag	Warm bitumen	PAV-aged

Emiliano Pasquini, Ph.D.

Materials

Mixture scale

- Plain and warm-modified bitumens
- Crushed limestone aggregate and EAF steel slag (fines included)

Emiliano Pasquini, Ph.D. Department of Civil, Environmental and Architectural Engineering ICEA – University of Padua

Materials

Mixture scale

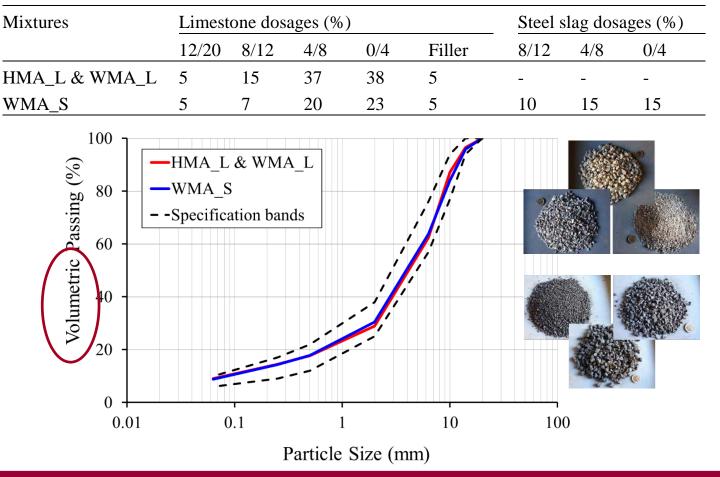
- Plain Hot Mix Asphalt HMA_L (reference mixture)
 - 100% limestone aggregates
 - 5.5% of P binder by weight of aggregates (15% by volume)

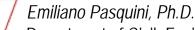
Plain Warm Mix Asphalt WMA_L

- 100% limestone aggregates
- 5.5% of W binder by weight of aggregates (15% by volume)

Warm Mix Asphalt containing steel slag WMA_S

- 60% limestone 40% steel slag by total weight of aggregates (68% limestone – 32% steel slag by volume)
- 4.9% of W binder by weight of aggregates (15% by volume) (same volumetric proportions)



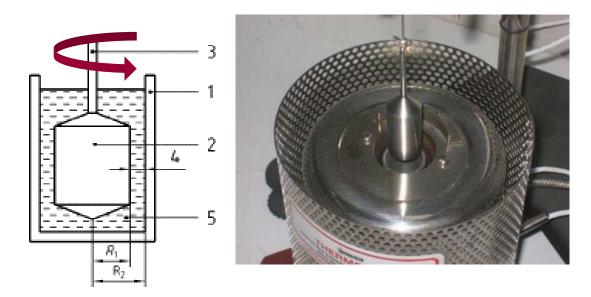


Materials

Mixture scale

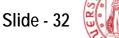
Outline

- I. Introduction
- II. Research Objective and Approach
- III. Experimental Plan
- IV. Materials
- V. Methodologies and Results
- VI. Conclusions
- VII. Further Studies



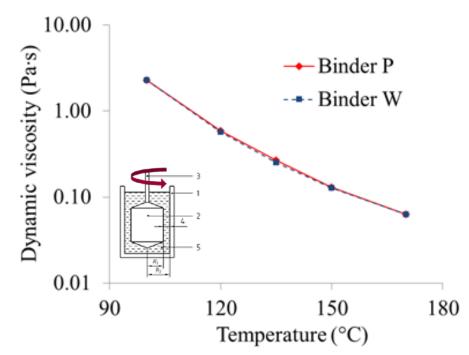
Methodologies and Results

Bitumen-Mastic scale


Dynamic viscosity tests (EN 13302)

Workability
Coaxial viscometer
T = 100÷170 °C
unaged binder

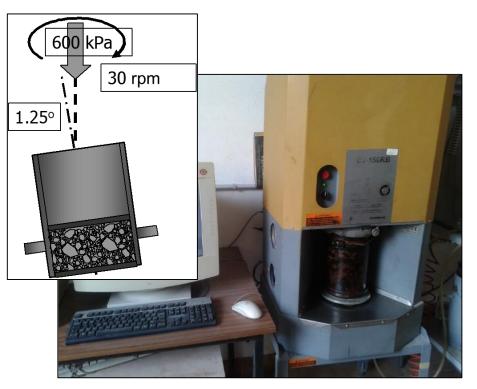
Emiliano Pasquini, Ph.D.



Methodologies and Results

Binder viscosity

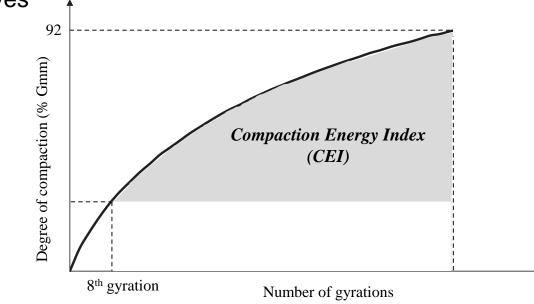
- The warm additive did not influence the viscosity of the plain binder
- Mixing and compaction temperatures cannot be viscosity-based


Methodologies and Results

Mixture scale

Superpave Gyratory Compactor – SGC (EN 12697-31)

Diameter = 150 mm Target void content = 3% 100 gyrations Height = 65 mm (by sawing)



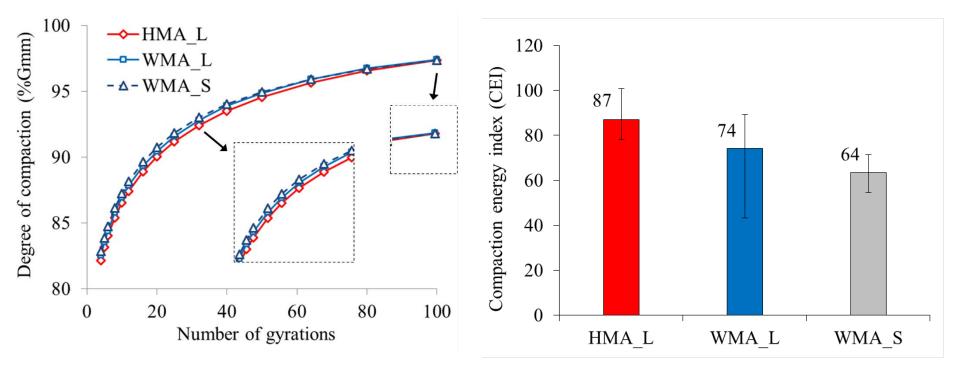
Methodologies and Results

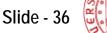
Mixture scale

Workability assessment

- final air void content mathematical G_{mm} SSD bulk density
- SGC densification curves CEI value

Emiliano Pasquini, Ph.D.




Methodologies and Results

Mixture Compactability

- Effectiveness of the WMA additive in promoting compaction (first phase)
- EAF steel slag guaranteed a further increase in workability

Methodologies and Results

Bitumen-Mastic scale

Ancona Stripping Test (AST)

Water resistance (affinity between aggregate and bitumen)

≈ Boiling water stripping method (EN 12697-11)
Uncompacted bitumen-coated aggregate
60 g aggregate (85 g steel slag) and 3 g bitumen
Immersion in boiling water for 45 minutes

7 Emiliano Pasquini, Ph.D. Department of Civil, Environmental and Architectural Engineering ICEA – University of Padua

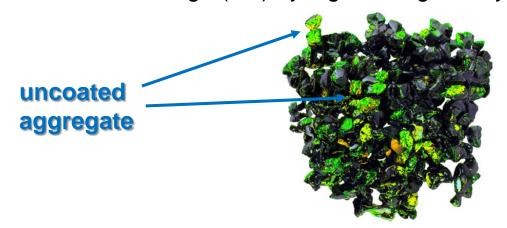
Slide - 37

Methodologies and Results

Bitumen-Mastic scale

Ancona Stripping Test (AST)

❖ Water resistance (affinity between aggregate and bitumen)
≈ Boiling water stripping method (EN 12697-11)
Uncompacted bitumen-coated aggregate
60 g aggregate (85 g steel slag) and 3 g bitumen
Immersion in boiling water for 45 minutes
Bitumen coverage (BC) by digital image analysis


Methodologies and Results

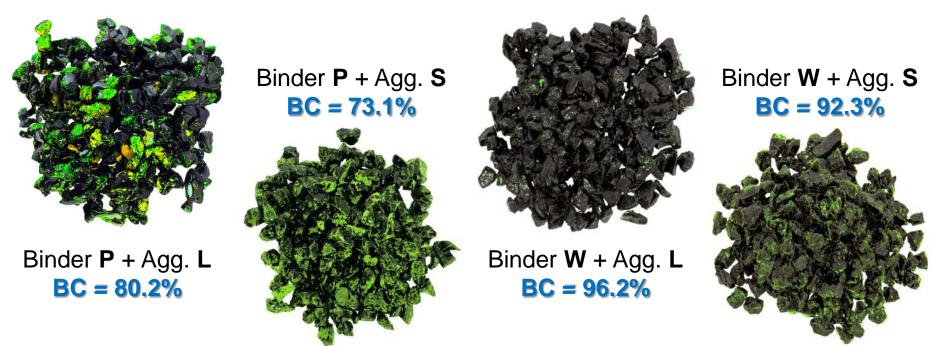
Bitumen-Mastic scale

Ancona Stripping Test (AST)

◆ <u>Water resistance (affinity between aggregate and bitumen)</u>
≈ Boiling water stripping method (EN 12697-11)

Uncompacted bitumen-coated aggregate 60 g aggregate (85 g steel slag) and 3 g bitumen Immersion in boiling water for 45 minutes Bitumen coverage (BC) by digital image analysis

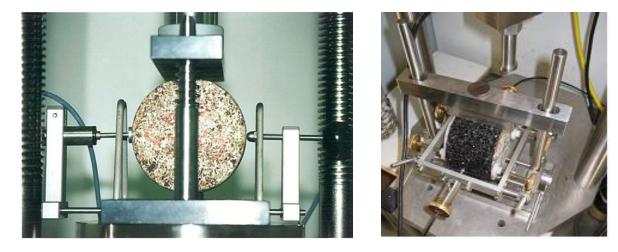
Emiliano Pasquini, Ph.D. Department of Civil, Environmental and Architectural Engineering ICEA – University of Padua


Slide - 39

Methodologies and Results

Binder-Aggregate Stripping Susceptibility

- High anti-stripping performance using WMA chemical additive
- Slightly lower moisture resistance for steel slag (lower alkalinity)



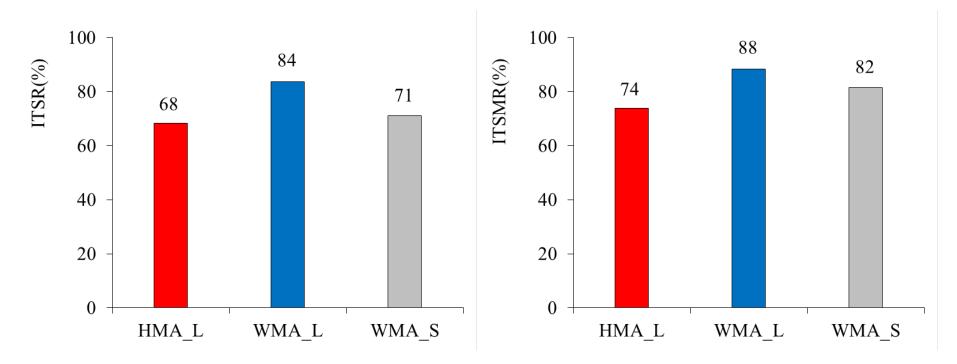
Methodologies and Results

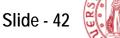
Mixture scale

□ ITS & ITSM ratios

 Water resistance (affinity between aggregate and bitumen) wet conditioning for 15 h at -18 °C and 24 h at 60 °C (ASTM D4867)
Indirect tensile strength (ITS) test at 25 °C and 50 mm/min (EN 12697-23)
Indirect tensile stiffness modulus (ITSM) test at 25 °C
3 replicates

Emiliano Pasquini, Ph.D. Department of Civil, Environmental and Architectural Engineering ICEA – University of Padua


Slide - 41


Methodologies and Results

Water Resistance of Mixtures

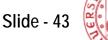
Confirmation of results obtained through the stripping tests

Methodologies and Results

Bitumen-Mastic scale

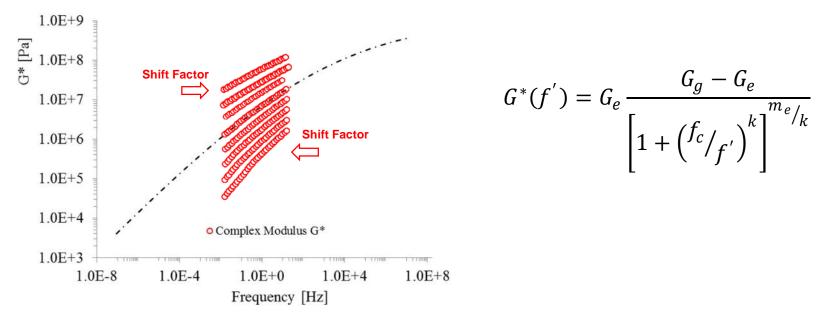
Dynamic shear rheometer (DSR) tests

Midrange service temperature properties
Linear viscoelastic behaviour (|G*| and δ)
Strain-controlled (0.05%) frequency sweeps (0.1÷100 rad/s)
T = 16÷58 °C


Long-term aged binder

8 mm diameter with 2 mm gap – 20 mm diameter with 1 mm gap

Emiliano Pasquini, Ph.D.


Methodologies and Results

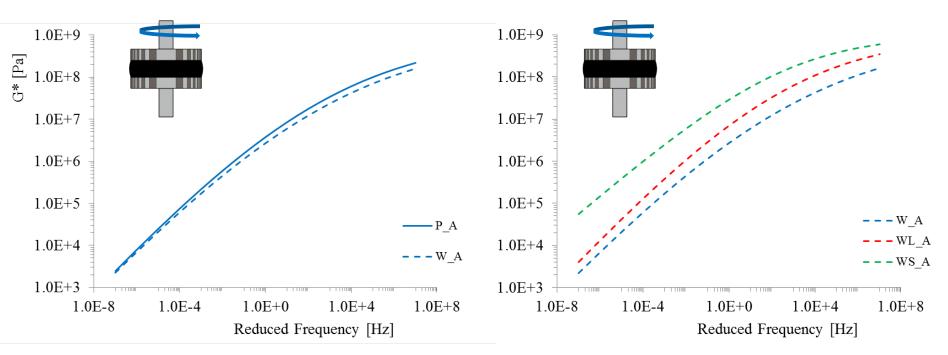
Bitumen-Mastic scale

Dynamic shear rheometer (DSR) tests

Midrange service temperature properties

Master curves applying the time-temperature superposition principle

Slide - 44


Emiliano Pasquini, Ph.D.

Methodologies and Results

Visco-elastic behaviour of bitumens and mastics

Quasi-negligible stiffness decrease at high reduced frequencies of W

Stiffness increase due to the addition of fillers (in particular the slag)

Methodologies and Results

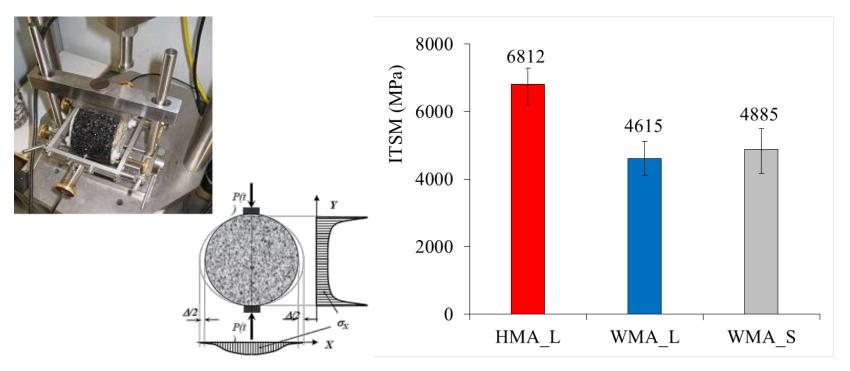
Mixture scale

ITSM tests (EN 12697-26/C)

Midrange service temperature properties

five load pulses horizontal deformation = 5 μ m rise-time = 124 ms T = 20 °C Poisson's ratio = 0.35 8 replicates

Emiliano Pasquini, Ph.D.



Methodologies and Results

Mixture Stiffness

- Lower stiffness of warm mixes (lower oxidative hardening)
- Slight increase in stiffness thanks to the inclusion of EAF steel slag

Methodologies and Results

Bitumen-Mastic scale

Dynamic shear rheometer (DSR) tests

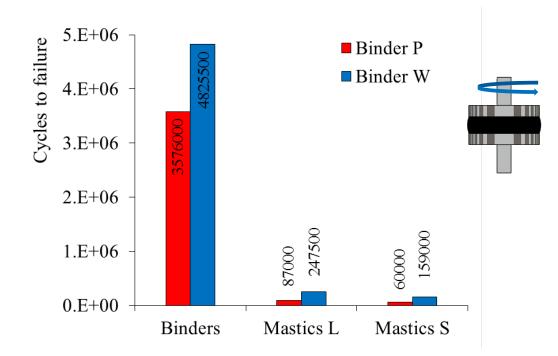
Midrange service temperature properties

Fatigue resistance (50% reduction in initial complex modulus G*) Strain-controlled (1.0%) repeated loading time sweeps (10 Hz) $T = 20 \ ^{\circ}C$

Long-term aged binder

8 mm diameter with 2 mm gap

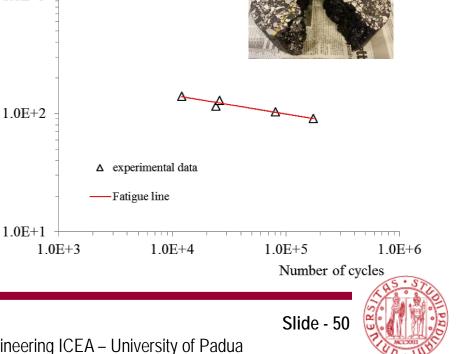
Emiliano Pasquini, Ph.D.



Methodologies and Results

Fatigue resistance of bitumens and mastics

- Warm additive led to a higher fatigue resistance
- Stiffening effect reflects in lower fatigue resistance

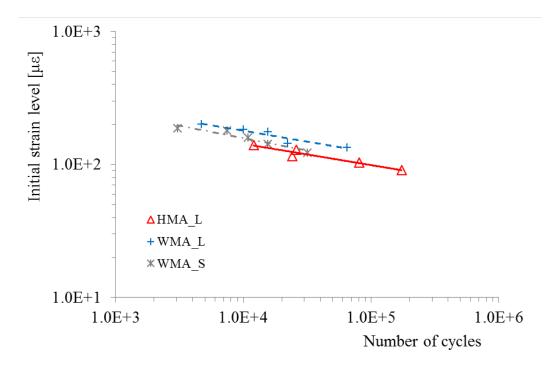

Methodologies and Results

Mixture scale

□ ITFT tests (BS DD ABF)

Midrange service temperature properties

load pulses (repetition period = 1.5 s) failure criterion = complete fracture of the specimen fatigue curves 5 stress levels = $300 \div 500$ kPa rise-time = 124 ms T = 20 °C 5 replicates


Emiliano Pasquini, Ph.D.

Methodologies and Results

Fatigue Resistance of Mixtures

- Slightly higher fatigue resistance of warm mixtures
- Slightly lower fatigue performance of the WMA containing steel slag

Slide - 51

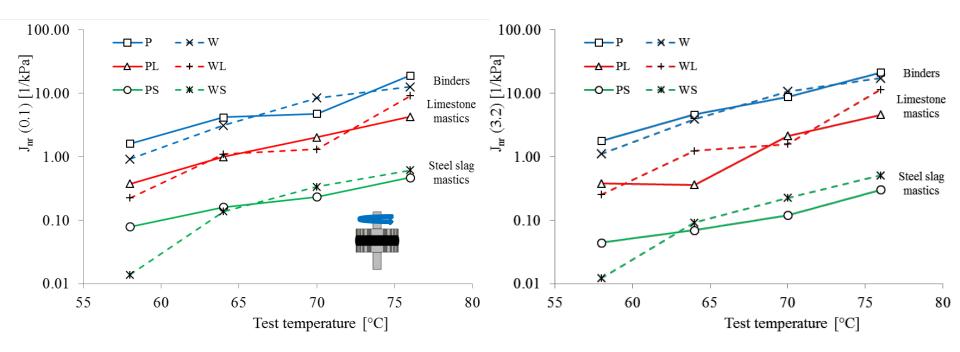
Methodologies and Results

Bitumen-Mastic scale

Dynamic shear rheometer (DSR) tests

High service temperature properties
Multiple Stress Creep Recovery (MSCR) tests (EN 16659)
10 creep-recovery cycles (1 s creep loading 9 s recovery time)
T = 58÷76 °C
Stress levels = 0.1, 3.2 and 10 kPa
Unaged binder
20 mm diameter with 1 mm gap

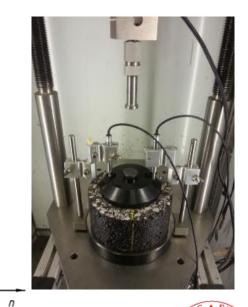
Emiliano Pasquini, Ph.D.



Methodologies and Results

High service temperature behaviour of bitumens and mastics

- Quasi-negligible influence of the warm additive
- Stiffening effect reflects in higher rutting resistance (in particular EAF)



Methodologies and Results

Mixture scale

RLA tests (EN 12697-25/A)

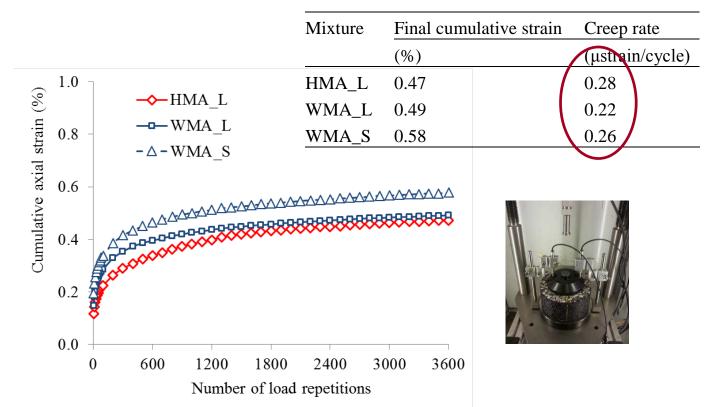
• High service temperature properties cyclic axial block-pulse pressure axial strain & creep rate 3600 loading pulses at 0.5 Hzstress level = 100 kPa T = 40 °C3 replicates

Emiliano Pasquini, Ph.D.

Department of Civil, Environmental and Architectural Engineering ICEA – University of Padua

2

Slide - 54



Results and Analysis

Permanent Deformation Resistance of Mixtures

WMA/EAF steel slag did not seem to penalize rutting resistance

Outline

- I. Introduction
- II. Research Objective and Approach
- III. Experimental Plan
- IV. Materials
- V. Methodologies and Results
- VI. Conclusions
- VII. Further Studies

Conclusions

- The warm chemical additive does not influence viscosity and stiffness of the binder while enhancing its fatigue resistance and affinity with aggregates
- Clear stiffening effect of the EAF steel slag filler improving anti-rutting properties but reducing fatigue resistance and affinity with asphalt
- The warm chemical additive guarantees adequate workability (higher with EAF steel slag) without affecting permanent deformation and extending fatigue life of the mixtures (lower stiffness due to less oxidative hardening)

Conclusions

 The influence of reduced temperatures and warm technology mainly hid the contribution (negative or positive) of EAF steel slag aggregates on binder-aggregate affinity, stiffness, fatigue resistance and rutting behavior

Outline

- I. Research Objective and Approach
- II. Experimental Plan
- III. Materials
- IV. Methods
- V. Results and Analysis
- VI. Conclusions
- **VII.** Further Studies

Further Studies

- Physical-chemical interaction
- Low temperature cracking

Field validation

Publications

- M. Pasetto, G. Giacomello, E. Pasquini, F. Canestrari, "Effect of warm mix chemical additives on the binder-aggregate bond strength and high-service temperature performance of asphalt mixes containing electric arc furnace steel slag", RILEM Bookseries, Vol. 11, 2015 – Proceedings, 8th RILEM International Symposium SIB2015, Ancona, 2015
- M. Pasetto, G. Giacomello, A. Baliello, E. Pasquini, "Rheological Characterization of Warm-Modified Asphalt Mastics Containing Electric Arc Furnace Steel Slags", Advances in Materials Science and Engineering, Vol. 2016, 2016. doi: 10.1155/2016/9535940
- M. Pasetto, E. Pasquini, G. Giacomello, A. Baliello, "Warm chemical additive to improve water resistance of asphalt mixtures containing steel slags: a multi-scale approach", Sixteenth LJMU Annual International Conference on Asphalt, Pavement Engineering and Infrastructure, Liverpool, 2017.
- M. Pasetto, A. Baliello, G. Giacomello, E. Pasquini, "Comprehensive performance characterization of warm mix asphalt containing steel slags: a laboratory study", 7th International EATA Conference – EATA2017, 2017
- M. Pasetto, A. Baliello, G. Giacomello, E. Pasquini, "Sustainable solutions for road pavements: a multiscale characterization of warm mix asphalts containing steel slags", Journal of Cleaner Production, Vol. 166, 2017. doi: 10.1016/j.jclepro.2017.07.212
- M. Pasetto, A. Baliello, G. Giacomello, E. Pasquini, "Steel slag as valuable aggregate in eco-friendly mixtures for asphalt pavements", Submitted to Seventeenth LJMU Annual International Conference on Asphalt, Pavement Engineering and Infrastructure, Liverpool, 2018

Emiliano Pasquini, Ph.D.

QUESTIONS?

emiliano.pasquini@unipd.it

