

Performance Evaluation Of Composite Mixes Containing Rap Aggregates & Hydraulic Binder For Heavy Traffic Pavement The RECYROUTE Project

IFSTTAR University of Lyon, ENTPE EIFFAGE Travaux Publics

- : M.L. Nguyen, J.M. Balay
- : H. Di Benedetto, C. Sauzéat
- : F. Olard(*), K. Bilodeau(**), B. Héritier, H. Dumont,
- D. Bonneau

(*) Presenting author (**) currently BAUVAL

OUTLINE

- Introduction
- Materials: RCC mixes with fibers and RAP
- Laboratory characterisation & full scale test
- Calibration for pavement design & examples
- Conclusions

Introduction

- Traditional technique RCC is recently taken in consideration:
 - Use of RAP as aggregates
 - Improving mechanical properties by adding steel fibres
- French National Research Agency (ANR) project **RECYROUTE** Development of an innovative material FRCC[®] (Fiber reinforced Rolled Compacted Concrete) mixed with RAP as long lasting composite material for heavy traffic pavements (*continuous structure without joints*)
- 7 Partners: 4 publics

• Budget: 2.3 million €

RCC: Roller Compacted Concrete RAP: Reclaimed Asphalt Pavement

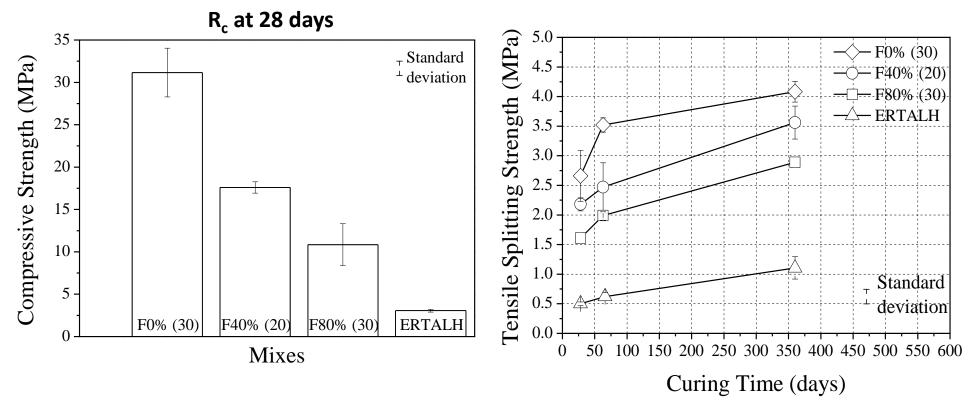

Materials

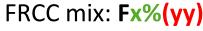
Dramix RC-80/60-BN steel fibres

Material	FRCC Haut-Lieu (hard limestone)	FRCC Crain (soft limestone)	FRCC RAP	ERTALH (ref.)
Sand 0/4	23%	23%	18%	-
Crushed Sand 0/6.3	35%	35%	-	25%
Gravel 6.3/14	30%	30%	-	-
RAP 0/14	-	-	70%	70%
Hyd. binder	12%	12%	12%	5%
Additive (Sika)	0.5%	0.5%	0.5%	-
Water content	6.1%	6.1%	6.2%	6.9%
Steel fibers	30kg/m ³	30kg/m³	20kg/m ³	-

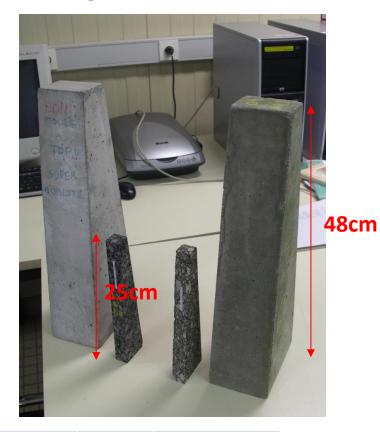
before/after compaction

ERTALH: RAP aggregate treated with hydraulic binder, 70% RAP and without fibers


Laboratory characterisation


Tests	Objectives	
Compressive Strength (Rc)		
Compressive Modulus (Ec)	Classical mechanical properties for concrete materials	
Tensile Splitting Strength (Rit)		
Complex stiffness modulus (E*)	Thermo-mechanical properties for materials containing RAP	
Fatigue resistance (σ₆ & b)		

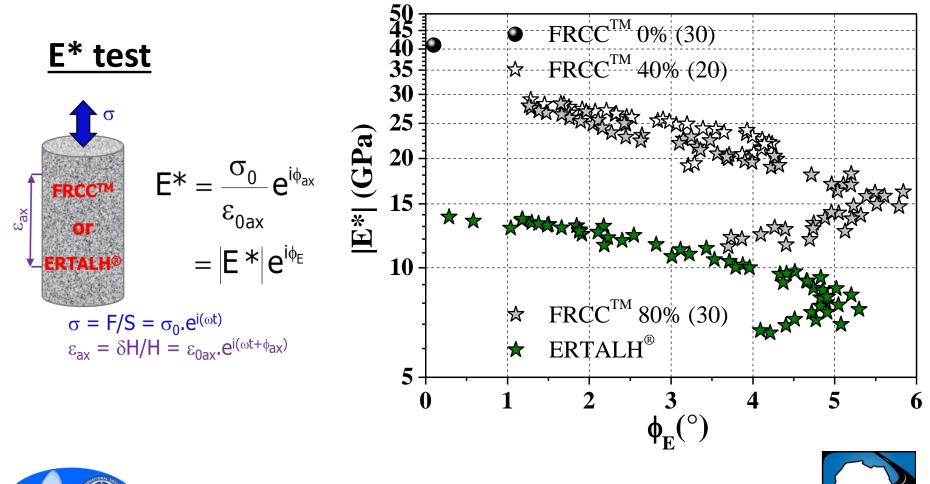
Example of laboratory tests



%RAP Fibres content (kg/m³)

Example of laboratory tests

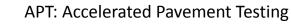
Fatigue test Actuator Load cell Laser sensor Specimen



- Controlled force @ f = 50 Hz
- Controlled T = 10° C

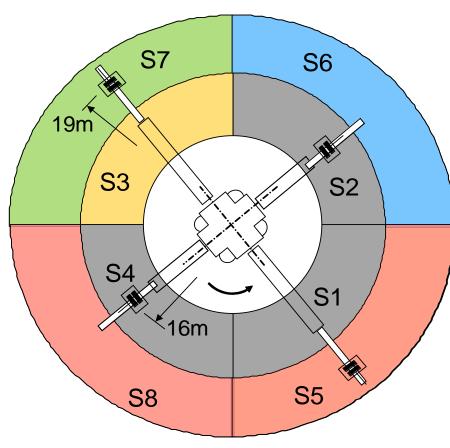
Materials	-1/b	σ ₆ (MPa)	σ ₆ for design (MPa)	
FRCC RAP	12.4	2.50	1.75	
ERTALH	12.4	1.17	0.82	

Example of laboratory tests



APT facility of the IFSTTAR

- Moving load in fatigue configuration: dual-wheel 65 kN
- Speed: up to 100 km/h (15 rounds/min.)
- Loading rate: up to 50 000 cycles/day



APT experiment

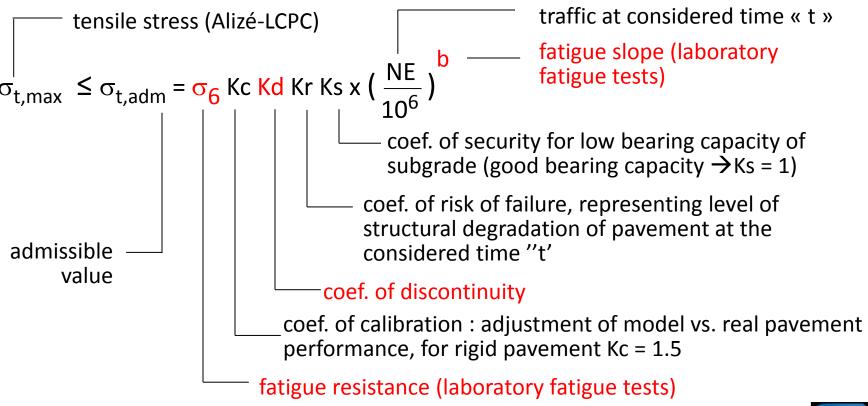
on selected formulations of FRCC & ERTALH

$R = 16m \approx 25m \times 4 = 100m$				
3.5cm thin HMA				
S1-13cm FRCC RAP	S2-12cm FRCC RAP	S3*-12cm EME2	S4-15cm FRCC RAP	
Subgrade 95 ÷ 110 MPa				

* S3 is the reference structure

	R = 19m	≈ 30m x 4	= 120m			
[3.5cm thin HMA					
	S5-13cm FRCC Crain	S6-12cm FRCC HtLieu	S7-20cm ERTALH	S8-15cm FRCC Crain		
	Old HMA		<u>Ref</u> .			
	Subgrade 95 ÷ 110 MPa					

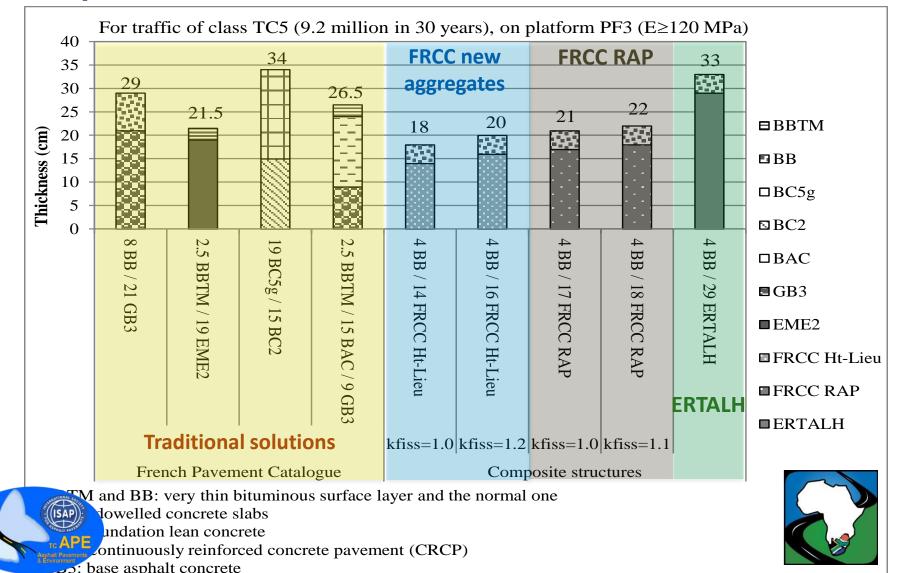
2.15 million heavy loads (mainly at 65 kN)



EME2: high modulus asphalt (French reference material for heavy traffic)

Calibration of design model based on fatigue criterion

For a hydraulic material :



Two additional factors

- Harmonization between APT results & Real Pavement $\rightarrow K_{harmonization}$
- Effect of hypothetic wide transverse cracking on FRCC pavement \rightarrow K_{fiss}

Examples of pavement design

Comparison FRCC & ERTALH with traditional solutions

Conclusions

- Lab tests showed that the mechanical properties of both FRCC and ERTALH decrease (Rc, Rt, E*, σ₆) with high RAP content.
 Viscous properties are observed as well.
- Full-scale pavement structures were constructed and tested under heavy loads of the IFSTTAR traffic simulator. This APT test showed encouraging behavior of FRCC[™] structures, despite low thicknesses of materials used in the base layer (12-15cm) and good behavior for the ref. ERTALH[®] in 20cm.
- Pavement design of FRCC structures shows similar thickness to high modulus asphalt pavement (EME2) used in France, but significant reduction of thickness compared to classical bituminous pavement (GB3) and concrete pavement structures as well.
- Perspectives: heavy duty pavements (harbors or industrial platforms)

Mai-lan.nguyen@ifsttar.fr Francois.olard@eiffage.com

