

3rd International Symposium on Asphalt Pavements & Environment ¹⁶ AUGUST 2015, SUN CITY, SOUTH AFRICA

Damage Quantification Of Bituminous Surfacing Seals With A Finite Element Modelling Approach

Johan Gerber University of Stellenbosch

Surfacing seal FEM approach Objective 1

Develop seal model architecture

- Structures: single, double & cape seals
- Variables: structural, time & traffic related
- Failure mechanisms: adhesion, cohesion & embedment

Surfacing seal FEM approach Objective 2

Quantify seal response model output

- Load repetitions to adhesion failure initiation
- Load repetitions to cohesion failure initiation
- Load repetitions for embedment development

Surfacing seal FEM approach Background information 1

Surfacing seal FEM approach Background information 2

[Kathirgamanathan, 2012]

Surfacing seal FEM approach Model development 1

Unique components

Surfacing seal FEM approach Model development 2

Surfacing seal FEM approach Model development 3

Surfacing seal FEM approach Traffic model

[De Beer and Fisher, 2013]

Surfacing seal FEM approach Simulation results: Adhesion

Surfacing seal FEM approach Simulation results: Cohesion

Surfacing seal FEM approach Simulation results: Embedment

Surfacing seal FEM approach Transfer function development

11 mm

15 mm

Embedment

______ <u>100</u> μm

[Huurman, 2008]

Cohesion

[Huurman, 2008]

Surfacing seal FEM approach Model verification: Adhesion 1

Minimum critical binder application rates for ball pen. value of 1 mm

Traffic analysis per lane per day					Average least dimension (ALD)				
AADT	\mathbf{HV}	\mathbf{LV}	$\mathbf{E80s}$	\mathbf{ELVs}	4	6	8	10	12
5848	20	5828	13	6628	$0.57^{\rm i}$	0.87	1.16	1.45	1.73
4501	50	4451	49	6451	-	0.72	1.01	1.3	1.58
3692	100	3592	121	7592	-	0.63	0.92	1.21	1.49
3028	200	2828	288	10828	-	0.56	0.85	1.13	1.41
2697	300	2397	472	14397	-	0.52	0.8	1.08	1.36
2330	500	1830	873	21830	-	-	0.74	1.02	1.29
2037	800	1237	1522	33237	-	-	-	0.94	1.22

ⁱ minimum application rate $[l/m^2]$

Surfacing seal FEM approach Model verification: Adhesion 2

Surfacing seal FEM approach Model verification: Cohesion 1

Surfacing seal FEM approach Model verification: Cohesion 2

Surfacing seal FEM approach Model verification: Embedment 1

Surfacing seal FEM approach Model verification: Embedment 2

Surfacing seal FEM approach Conclusions

- Model quantification is laboratory dependent
- Unique damage ratios per failure mechanism
 - 3:1 adhesion
 - 2:1 cohesion
 - 11:10 embedment
- Review bitumen column DSR test setup

nclude rest periods for self-healing

Thank you

Questions?

