

3rd International Symposium on Asphalt Pavements & Environment ^{16 AUGUST 2015, SUN CITY, SOUTH AFRICA}

Mix Design of Bitumen Stabilised Materials (BSMs) South Africa and Abroad

Kim Jenkins: Dave Collings:

Stellenbosch University BSM Laboratories (Pty) Ltd

TOPICS

Design criteria

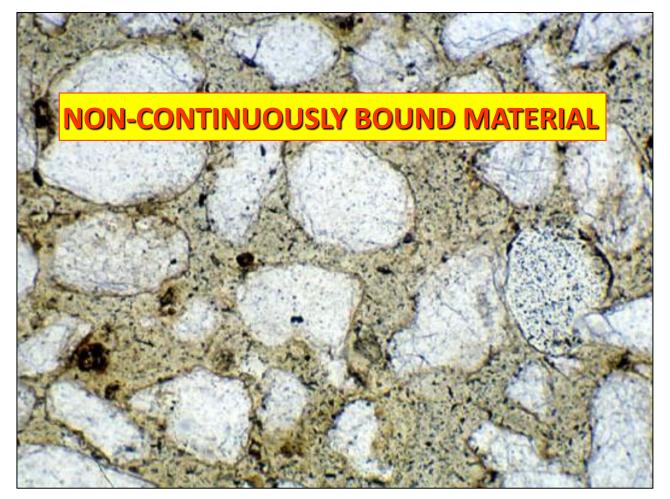
What answers do we want from a mix design?

Tooling up for BSM mix design testing

Determining the required treatment

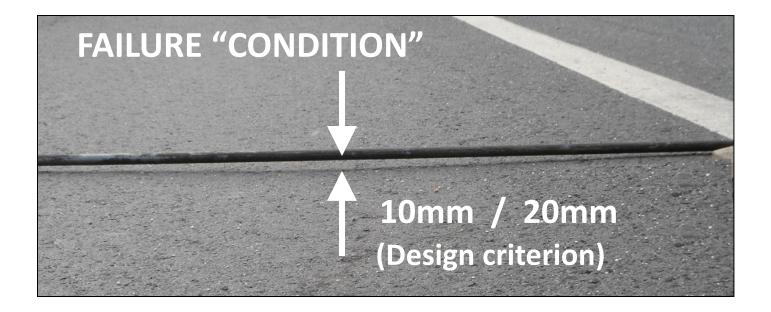
Determining the key performance properties

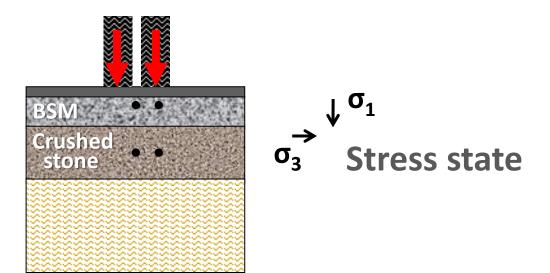
Design Criteria


Failure mechanism of BSMs

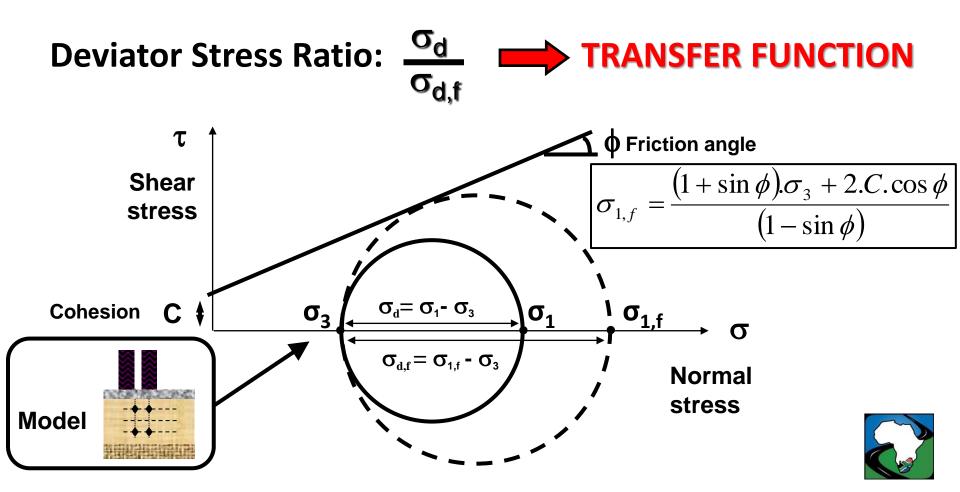
Characteristics of the parent material

Key performance parameters





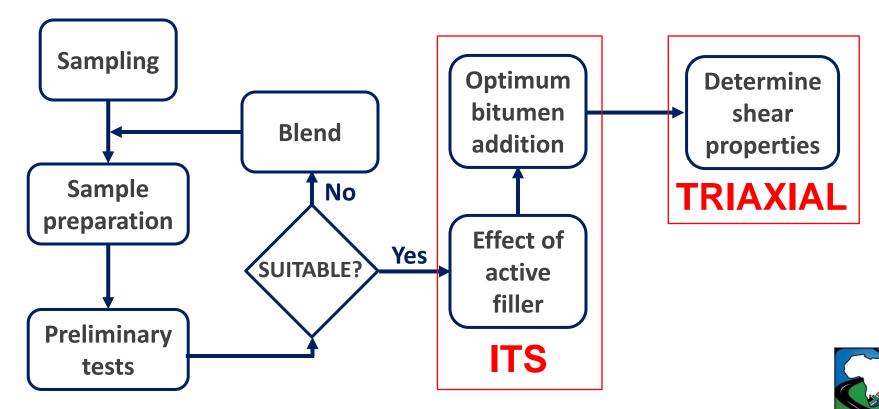
- BSMs are granular materials "on steroids"
- Shear properties dictate performance


DESIGNING BSM AND GRANULAR LAYERS

Deviator stress (σ_d) = $\sigma_1 - \sigma_3$

$$\sigma_{1,f} = \frac{(1 + \sin \phi) \cdot \sigma_3 + 2 \cdot C \cdot \cos \phi}{(1 - \sin \phi)}$$

- σ_3 : Confining pressure \rightarrow MODEL
- C : Cohesionφ : Friction angleTRIAXIAL TEST


PRELIMINARY STEPS:

Is the material suitable for stabilising with bitumen? How much bitumen must be added? Is an active filler required?

MIX DESIGN FLOWCHART

TEST SPECIMENS

Mixing (simulate field conditions)

Density (100% of mod AASHTO density)

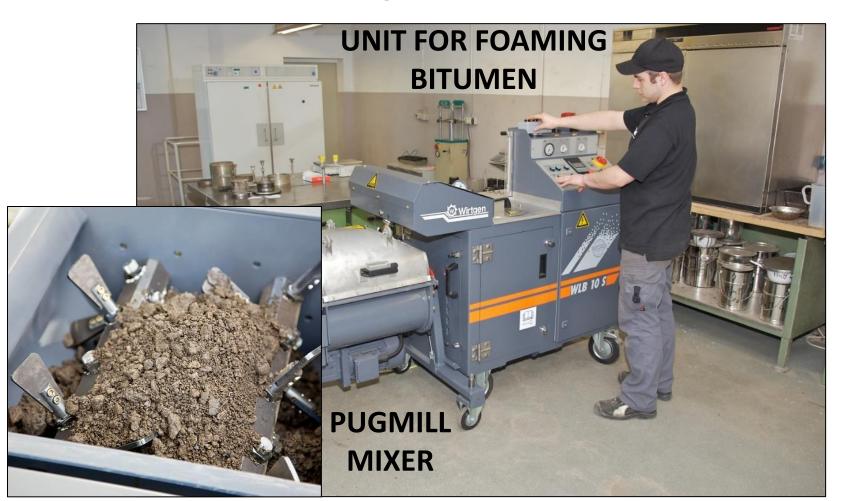
Curing regime (40°C / dry / soaked / equilibrium)

Temperature of specimens when tested (25°C)

Tooling up for BSM mix design testing

Material separator (4 fractions)

Laboratory crusher (>19mm reduced to <19mm / >13mm)


Unit for producing foamed bitumen

Twin-shaft pugmill mixer (elimination of injection losses)

Specimen manufacture (vibrating hammer compaction)

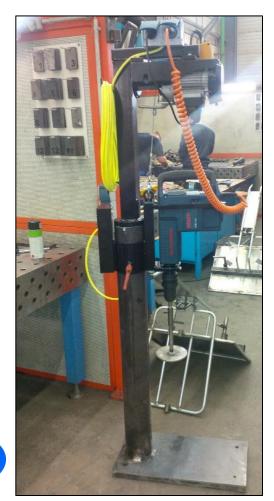
Applying confining pressure (triaxial testing)

SPECIMEN MANUFACTURE

Vibratory hammer compaction

(Split moulds)

152mm φ



95mm

300mm

Inter-Layer Roughening (ILR) Device

Curing regimes

40°C curing temperature ITS specimens – dry to constant mass Triaxial specimens – equilibrium m/c Soaking: 24 hours submerged

Mix Design # 1. Preliminary Tests (material suitability)

Grading (sieve analysis – washed method)

Atterberg Limits (plasticity)

Moisture / density relationship (modified AASHTO)

Mix Design # 2. Determine the effect of Active Filler

Estimate the optimum bitumen application rate Apply / mix 3 batches with identical bitumen addition + different active fillers (1% by mass)

Specimen manufacture / curing

ITS testing

Interpreting the results

Guidelines for estimating Optimum Bitumen Addition*					
Fraction < 0.075mm (%)	Bitumen addition (% by mass of dry aggregate)		Typical material		
	Fraction < 4.75mm		Typical material		
	< 50%	>50%			
< 4	1.8	2.0	Recycled asphalt (RA)		
4 - 7	2.2	2.4	RA / Graded crushed stone /		
7 – 10	2.4	2.6	Natural gravel / blends		
> 10	2.6	3.0	Gravels / sands		

* Wirtgen Cold Recycling Technology Manual (2012), Page 245

3 mixes: Same bitumen application rate (e.g. 2.2%)

Active Filler: 1% Lime None 1% Cement

Bitumen addition	(%)	2.2	2.2	2.2	
Type / amount of active filler		(%)	1% Lime	None	1% Cement
Moulding moisture content		(%)	8.5	8.4	8.5
TEST RESULTS	TEST RESULTS				
ITS _{DRY}		(kPa)	267	243	259
Moisture content at break		(%)	2.5	2.4	2.5
Dry density		(kg/m ³)	2248	2257	2248
Temperature at break		(°C)	24.9	25.1	24.9
Displacement		(mm)	2.3	2.1	1.7
ITS _{WET}		(kPa)	184	58	126
Moisture content at break		(%)	6.1	6.3	6.1
Dry density		(kg/m ³)	2247	2254	2247
Temperature at break		(°C)	25.0	24.9	25.0
Displacement		(mm)	3.1	2.8	2.3

Mix Design # 3. Determine the Optimum Bitumen Application rate

Selecting the amount / range of bitumen to be applied

Specimen manufacture / curing

ITS testing

Interpreting the results

Select bitumen addition range

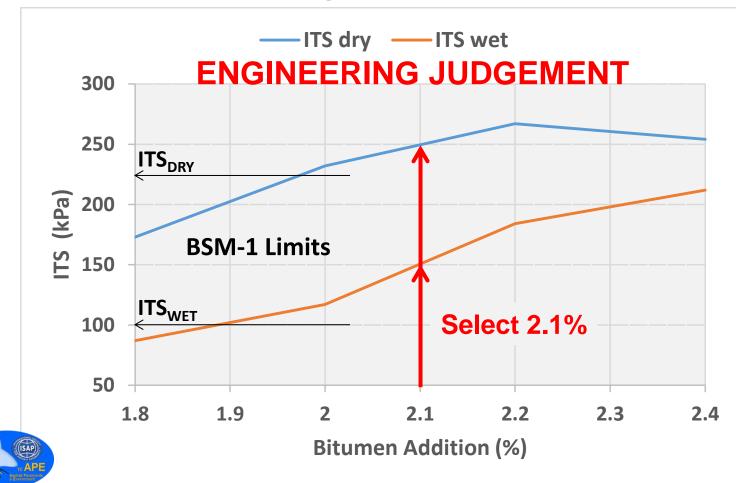
Guidelines fo	estimating Optimum Bitumen Addition
---------------	-------------------------------------

Fra	action < 4.75mm	Typical material	
< 50%	S >50%		
18	2.0	Recycled asphalt (RA)	
2.2	2.4	RA / Graded crushed stone /	
2.4	2.6	Natural gravel / blends	
2.6	3.0	Gravels / sands	
	(% by r Fra < 50% 18 2.2 2.4	182.02.22.42.42.6	

3 mixes: Same active filler addition (e.g. 1.0% lime)

1.8%

Bitumen addition:


2.0%

2.4%

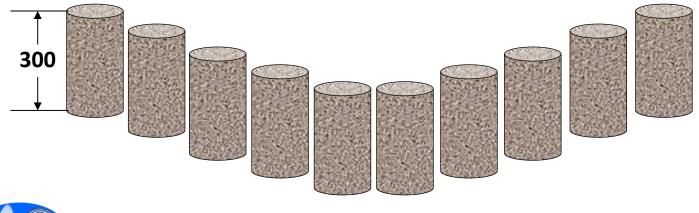
Bitumen addition	(%)	1.8	2	2.2	2.4
Type / amount of active filler	(%)	1% Lime	1% Lime	1% Lime	1% Lime
Moulding moisture content	(%)	8.6	8.4	8.5	8.6
TEST RESULTS					
ITS _{DRY}	(kPa)	173	232	267	254
Moisture content at break	(%)	2.6	2.4	2.5	2.4
Dry density	(kg/m ³)	2255	2257	2248	2239
Temperature at break	(°C)	24.9	25.1	24.9	25.0
Displacement	(mm)	2.1	2.1	2.3	2.7
ITS _{WET}	(kPa)	87	117	184	212
Moisture content at break	(%)	6.3	6.3	6.1	6.0
Dry density	(kg/m ³)	2256	2254	2247	2241
Temperature at break	(°C)	24.9	24.9	25.0	24.9
Displacement	(mm)	2.9	2.8	3.1	2.9

Mix Design # 4. Determine the Shear Properties

Specimen manufacture / curing

Triaxial testing

Confining pressures

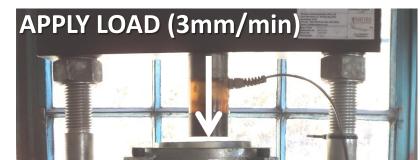

Interpreting the results

10 specimens manufactured at Optimum Bitumen Content (with active filler)

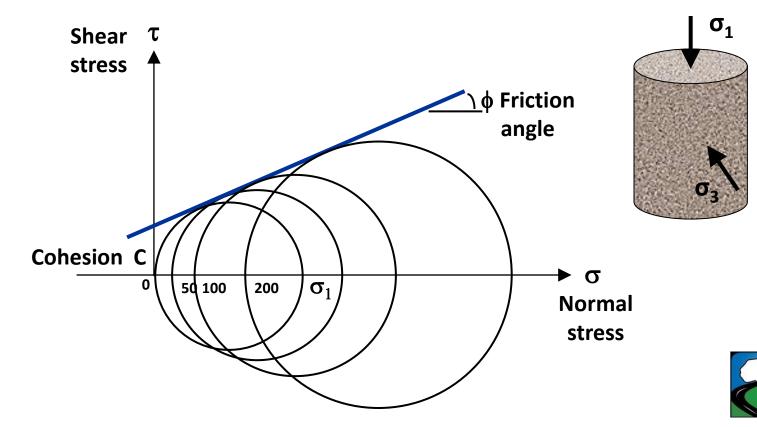
Cured at Equilibrium Moisture Content

Pairs tested at 4 different confining pressures

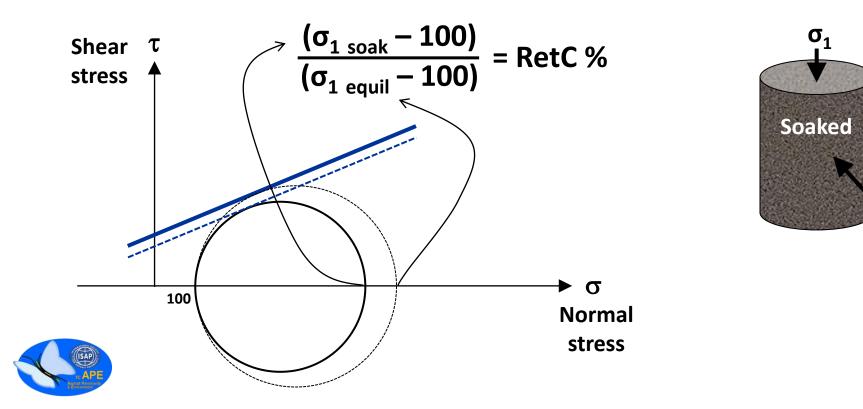
Soaked


Specimen inserted into a latex bladder

Positioned in half of split confining cylinder on base plate


APPLY CONFINING PRESSURE (AIR)

 σ_3


Determine the shear properties (C and ϕ)

Determine the Retained Cohesion (RetC)

 σ_3

	-			Sind Oouti	IAIIIca		
Bitumen added	(%)	2,1					
Type and percent filler added	(%)		1% Lime				
Average Diameter	(mm)	152	152	152	152	152	
Average Height	(mm)	283,0	290,5	291,6	292,0	290,3	
Moulding moisture content	(%)	7,5	6,8	7,6	7,0	7,7	
Dry Density	kg/m3	2263	2266	2260	2261	2262	
TEST RESULTS							
Applied Confining Stress (σ3)	(kPa)	0	50	100	100 Soaked	200	
Applied Failure Load	(kN)	29,6	35,7	42,8	40,4	49,0	
Moisture Content at break	(%)	3,6	3,7	4,0	5,8	3,9	
Temperature at break	(oC)	24,9	24,8	25,0	25,3	25,0	
Displacement	(mm)	4,5	5,0	5,5	5,6	6,9	
CALCULATIONS							
Applied Failure Stress	(kPa)	1631	1967	2360	2226	2700	
Mass of dead loads	(kg)		5,1				
Stress due to dead loads	(kPa)	2,8					
Major Principle Stress at failure (σ1,f)	(kPa)	1634	1970	2363	2229	2703	
COHESION (C)	(kPa)	368	INTERNAL ANGLE OF FRICTION (φ)			43,2	
RETAINED COHESION	(%)	94	TG2 (2009) Material Classification BASED ON COHESION & FRICTION ANGLE			BSM 1	

