

Asphalt pavement design: State of practice

Jorge Soares, UFC

Fortaleza October 6th, 2009

OUTLINE

(I) "GENERAL ASPECTS OF ASPHALTIC PAVEMENT DESIGN
METHODS FROM DIFFERENT COUNTRIES AND RELATION TO A NEW
BRAZILIAN DESIGN METHOD"

Jorge Barbosa Soares, LMP/UFC Angel Mateos Moreno, CEDEX Transport Research Center, Madrid Laura Maria Goretti da Motta, COPPE/UFRJ

(II) NATIONAL PROJECT: "ASPHALTIC PAVEMENT DESIGN SYSTEM"

(I) PAPER MOTIVATION

- Limitations of the current Brazilian design method (1966)
 - CBR for sublayers
 - Structural coefficients (no advantage taken from the quality of the materials)
 - ESAL's for traffic
 - Aspects from USACE and AASHTO design methods
- Fatigue is not considered
- Mechanistic methods today in Brazil are restricted to toll-roads
- Recent developments by AASHTO (MEPDG)

UNITED STATES

- 2 methods of analysis: multilayer linear elastic and FEM
- 4 inputs: traffic, material characterization, climate and reliability
- 3 levels f (importance of project and data availability):
 - (i) Level 1 properties from mechanical testing, e.g., complex modulus
 - (ii) Level 2 correlations. Dynamic modulus estimated from binder testing, aggregates and mixture characteristics
 - (iii) Level 3 less precision, correlations
 - Eliminates **Equivalence Factor**; uses **full axle load spectrum** (yields higher levels of rutting and cracking compared to 18K ESAL's)
- Vehicle Speed affects the viscoelastic response of the asphaltic layer

transfer functions still used as criteria

19th Brazilian Asphalt Conference

" OVERVIEW OF THE NEW 2007 AASHTO MECHANISTIC-EMPIRICAL PAVEMENT DESIGN GUIDE

BRIDGING THE GAP BETWEEN MIX AND STRUCTURAL DESIGN"

By
Dr.M.W.Witczak
Professor
Arizona State University

Professor Emeritus,
University of Maryland

9-11 June 2008

Rio de Janeiro, Brazil

FEATURES OF THE AASHTO M-E PAVEMENT DESIGN GUIDE

- Developed under the US NAS (National Academy of Sciences)—NCHRP (National Cooperative Highway Research program)
- *\$11,000,000 7 Year Effort* Asphalt Consortium!
- Project Team Leaders: AC/Flexible Pavements: Dr. M.W.Witczak
 Rigid Pavements: Dr.M.Darter
- The AC/Flexible Pavement Group (Team)
 - Team comprised of 27 Professionals: 21 PhD's; 6 MSCE
 - Flexible Team Make-up by Countries: US, Egypt, Israel, Brazil, India, Pakistan, Lebanon, Romania, Poland, Mexico, Bangladesh, Finland, Taiwan, France, Switzerland, Peru, China, Palestine, Colombia

M-E PDG is the most powerful Pavement-Material Analysis-Design Tool ever developed.

SITUATION IN DIFFERENT COUNTRIES - EUROPE

Germany, Austria, Belgium, Spain, France, Italy, Portugal, Great Britain, and Switzerland

INFORMATION

- (i) date / previous version
- (ii) agency responsible
- (iii) format for practical use
- (iv) structural analysis
- (v) alternative methods
- (vi) traffic and subgrade
- (vii) materials characterization

MATERIALS IN EUROPE

- Use of granular layers under asphaltic surface coarse (help structure capacity)
- Minimum depth, 200mm
- Base materials mainly processed (crushed). Natural materials in different %
- Common: granular and crushed materials w/ cement (min 3%; up to 6%). Minimum depth:150-200mm
- High quality layers, including modified w/ cement, as **subbase** (semirigid pavements). **Inverted pavements:** asphaltic surface, subbase material w/cement, and crushed material in the base layer (avoid reflection of contraction cracks); depth of **anti-cracking layer 120-150mm**

MATERIALS IN EUROPE

- Asphalt Mixtures: min depth / heavy traffic (even not so heavy traffic): 100mm
- Seven types: Most common *Asphalt Concrete (AC)
 - * 4-6% binder content and 3-6% void content
 - * BBTM; SA; HRA; SMA; MA; PA
- Project (mechanical behavior):

 lab wheel tracking (EN 12697-22)

 water sensitivity Marshall specimens

 MME (high modulus), min 11,000MPa

fatigue test, 4 points (EN 12697-24) -

- Quality control determined in terms of dens

GENERAL INFO

- Most recent documents: **US 2004 (2008)**, Spain (2003), Germany and Great Britain (2001)
- Older documents: **14 yrs** (Portugal and Italy)
- Typically revised every 10 yrs

- Brazil: 1966 (minor revision in 1981), therefore, over 40 yrs

TRAFFIC

- Most detailed part of methods. Sometimes **separate standard** (different definitions of **heavy vehicles** or equivalence factors)
- Standard Axle: 8t (Great Britain and Switzerland), 10t (Germany and Austria), 13t (Spain and France)
- Max axle load (single axle): 11,5t, but not widespread yet
- Fourth power law for equivalence factors
- Project time: 20 yrs

SUBGRADE

- Compressibility modulus (or deformability), plate test; CBR, and more frequently my resilient modulus
- Correlation: compressibility modulus (MPa) = 10 x CBR
- Minimum values: 30MPa (Italy, Switzerland and Portugal), 35MPa (Austria), 45MPa (Germany), 50MPa (France), 60MPa (Spain) and 150MPa (Great Britain)
- For heavy traffic: 80MPa (Portugal), 90MPa (Italy), 120MPa (France) and 300MPa (Spain)

PRESENTATION OF THE METHOD

- Majority considers the **structural response**; calibration with lab results and field data (existing or testing sections)
- Europe in general utilizes catalogues with pre-defined sections for pavement design

BRAZIL

- In principle, the simplification by catalogues is not the idea that we intend to follow for the **New Brazilian Design Method**
- The plan is to develop a system:
 - structural modeling (FEM)
 - materials modeling (performance tests)
 - design criteria (transfer functions)

ME-PDG calibrated with Brazilian data?

OUTLINE

(I) "GENERAL ASPECTS OF ASPHALTIC PAVAMENT DESIGN
METHODS FROM DIFFERENT COUNTRIES AND THE RELATION TO A
NEW BRAZILIAN DESIGN METHOD"

Jorge Barbosa Soares, LMP/UFC, Fortaleza Angel Mateos Moreno, CEDEX Transport Research Center, Madrid, Espanha Laura Maria Goretti da Motta, COPPE/UFRJ, Rio de Janeiro

(II) NATIONAL PROJECT: "ASPHALTIC PAVEMENT DESIGN METHOD"

REDE TEMÁTICA DE ASFALTO ASPHALT NETWORK

DEVELOPMENT OF AN ASPHALTIC PAVEMENT DESIGN METHOD

Cold and Warm Asphalt Mixture Design / Characterization and Pavement Design October 05-06, 2009

Manual for Project, Construction, and Monitoring of Test Sections

2009

MANUAL PARA PROJETO, EXECUÇÃO E ACOMPANHAMENTO DE PISTAS EXPERIMENTAIS

Projeto Rede Temática de Asfaltos

