

Sustainable Development through Asphalt Recycling in Switzerland

by

Manfred N. Partl

Ass. Prof. KTH Stockholm, Adj. Prof. Carleton, Ottawa, CA

EMPA, Swiss Federal Laboratories for Materials Testing and Research, Laboratory Road Engineering/Sealing Components, www.empa.ch/Abt113

International Workshop ISAP Technical Committee APE Asphalt Pavements and Environment, 8th August, Qingdao, Shandong, China

PI/113/'09

M.N. Partl: ISAP-APE Workshop '09, Qingdao

Outline

- Introduction (Definitions, EN)
- Hot Recycling
- Low-Temperature recycling
- Application (Switzerland)
- Conclusions

Introduction

PI/113/'09

Introduction

M.N. Partl: ISAP-APE Workshop '09, Qingdao

What is Asphalt Recycling?

Reclamation of Old Materials for Re-use in Asphalt Pavements

Old Materials means:

- Asphalt RAP (EN 13108-8): reclaimed by milling of asphalt road layers, by crushing of slabs ripped up from asphalt pavements or lumps from asphalt slabs and asphalt from reject and surplus production
- Secondary Materials: manufactured material that has already been used at least once (...typically for another purpose)

Re-cycling and Re-Use

Recycling RAP:

Re-Use of old **pavement materials** in new pavements

Goal:

- No down-cycling: use 100% in same function w. same or improved prop. & performance as "new"; sustainable, energy saving
- Repeated recycl. (perpetual re-use)

Re-Use of Second. Material:

Re-Use materials of **non-pavement origin** in pavements (crushed building or demolition waste, industrial & private waste)

Goal:

- No linear landfill: use 100% to obtain equal or improved prop. & performance as with new material; sustainable
- Repeated recycl. (perpetual re-use)

Roofing Shingles

Tire Scrab

PI/113/'09

Swiss Recycling: Main Principles

FOEN Federal Office for the Environment

- Promotion of Closed Loop Material Cycles
 - Recycle for same material application, i.e. only recycled materials from roads shall re-used for new roads, because
 - nature & composition of the material is known
 - material with already proven good mechanical properties
 - Recycle to highest possible quality
 - More than 95M% must be mineralic
- Recycling with Principle of Precaution
 - Avoid risky materials from the very beginning
 - Check technical practicability of recycling early
- No Problem Shifting
 - Don't recycle hazardous materials with future risks
 - No shift from one media to another, e.g. air→water
- Economic Cost Ecological Benefit
 - Economically & ecologically reasonable (e.g. energy)

PI/113/'09

M.N. Partl: ISAP-APE Workshop '09, Qingdao

EN Standards EN 13108-8

Bituminous mixtures — Material specific. — Part 8: Reclaimed asphalt

EN defines:

- Material prop. (asphalt, aggregates)
- Binder type new mix (ex. PmB)

EN does NOT define:

- Mix design
- Max. content of RAP (w. exceptions)

Reclaimed Asphalt is defined by:

- Max. size of RAP particles U
- Lower (d) & upper (D) **aggregate sizes** in asphalt particles d/D URA d/D mm, e.g. 40 RA 0/8mm
- Aggregate grading
- Binder properties (Softening Point and Penetration)
- Binder content
- Concentration of foreign matters <u>Group 1</u> (cement concrete & mortar, bricks, metal, etc) & <u>Group 2</u> (wood, plastics, synthetic materials; etc.):
 - Category F1: content of <u>Group 1</u> ≤ 1%-W and of <u>Group 2</u> ≤ 0,1%-W
 - Category F5: content of Group 1 ≤ 5%-W and of Group 2 ≤ 0.1%-W
 - Category Fdec: content & nature of all foreign matter declared.
 - → "Content" means: Remains in two 8mm sieves (EN12697-42)

PI/113/'09

M.N. Partl: ISAP-APE Workshop '09, Qingdao

Hot Recycling

PI/113/'09

Mass Flow & Emission Sources/Locations

PI/113/'09

Hot Recycling

M.N. Partl: ISAP-APE Workshop '09, Qingdao

Reduction of Emissions at Paver

- Use components with low emissivity
 - Main components:
 - **●Bitumen:** low content of hazardous substances
 - Stones: in most cases inert
 - Other components:
 - Solvents: evaporates
 - Polymers: mostly no emissions (to be verified)
 - Tar: high concentration of PAH and Phenol
- Vapor collectors and paver cover
- Respect work instructions and max. temperatures
- HRA: if little tar (<20'000ppm) temp <160°C ok</p>
- Mastic Asphalt: collect vapor, no tar contamin.
- Develop tech. processes to reduce working temperatur

Low Temp Recycling

15 *Pl/113/*'09

Low Temp. Recy.

Hot-Cold RAP Recycling in Europe (from EAPA 2007)

Total RAP in 17 European Countries: ca. 45 mio t (AT, BE, CZ, DK, FR, DE, IR, IT, LU, NL, NO, PT, RO, SL, ES, SE, CH)

Low Temp. Recy.

PI/113/'09

M.N. Partl: ISAP-APE Workshop '09, Qingdao

% of new Hot&Warm mixes with RAP in Europe (from EAPA 2007)

16 Countries: (BE, CZ, DK, FR, DE, IR, IT, LU, NL, NO, PT, RO, SL, ES, SE, CH)

Pav. thickness limited, to allow water disappear

Logistics (Water-Transport to construction site)
Expensive
PI/113709

Only for compacted asphalt

M.N. Partl: ISAP-APE Workshop '09, Qingdao

pray Nozzle

Foamed Bitumen

EMPA

Applicationss

RAP in Switzerland (FOEN & SN 670141)

■ Dosage (only valid for RAP Ø<35mm from Surface Courses):</p>

(SN670062)

Mixture Type	RAP Content for Admixture	
	Cold [M-%]	Hot [M-%]
AC Surface C.	1015	2030
AC Base C.	1525	3060
AC Subbase	2030	5080

Some Special Regulations:

- Re-Recycling must be possible
- Do NOT mix RAP with recycl. gravel/sand
- Do NOT use RAP with hydr. binder
- Do NOT use Concrete mat. w. bitum. binder
- Do NOT use RAP if in permanent contact w. ground water (min. distance required ca. 2m)
- Do NOT use RAP for drainage layers

Tar contaminated RAP:

- No Restriction if PAH in Binder <5000 ppm</p>
- Restricted if PAH in Binder 5000..20'000 ppm (Dilute to 5000 ppm & stay below MAK for BaP while construc.)

Recycl. Mat.	RAP	
Asph. Surf. C	Ideal Use	
Asph. Base C		
Asph.Subb.		
Bit Stab Subb.	Possible Use	
Concr. Pav.	NO	
Hydr Stabi	NO	
Un-bound Subbase	Use under Bound Layer OK	
Un-bound Suface	Possible Use	
Concrete	NO	

- PAH Polycyclic Aromatic Hydro-Carbonate
- MAK: Max. Tolerance of Canc. Mat. at Work
- BaP: Benzo[a]pyrene

- Used in Zurich for MA on Bridges since 2004 and for AC since 2005 (positive for layers hot in hot = time reduction); used in ZRH Airport; new focus: Roundabouts
- Special points
 - Faster opening to traffic
 - Faster aging... use for dense courses
 - Overdosage may lead to problems

Case Study: Cold Recycl. in Zurich

A4 West Peripheral of Zurich "Knonaueramt"

A3 West Peripheral of Zurich "Entlisberg" - Use of "Egli" Total-

Structure A4:

	\	
Materials	Thick. [cm]	
SMA 8	3	
AC B 22 H	8	
AC T 22 H	8	
SAMI 8/11	1	
upper KMF(H)	18	
lower KMF(H)	>22	
Subgrade ME ₁ :	>30MN/m ²	

Structure A3: Materials Thick. [cm] **SMA 11** AC T 32 H 12 AC F 32 H 15 **SAMI 6/11** upper KMF(H) 18 20 lower KMF(H) Subgrade ME₁: >30MN/m

ca. 40% RAP in KMF(H) from intermediate stock

PI/113/'09

Applications CH

M.N. Partl: ISAP-APE Workshop '09, Qingdao

Structural Numbers Comparison

Comparison Structural Number a (AASHTO 1986) for Subbase

Baudirektion Inton Zürich

1 cm Cold Mix Subbase (KMF)= 2.7 cm Gravel

1.1 cm Hydraulic Stabilized Subbase TBA Zürich

0.8 cm AC F Hot Mix Subbase

Comparison of Structures T4 (300...1000ESALs/d), S2 (i.e. ME₁=15...30 MN·m⁻²)

KMF (H) must be KMH (B) may be under membrane, e.g. SAMI

EMPA

Conclusions

7

PI/113/'09

Conclusions

M.N. Partl: ISAP-APE Workshop '09, Qingdao

Conclusions

- RAP introduces many new parameters into an already complex system, that we must learn to manage
 - Reduce diversity of RAP and homogenize as much as possible in order to improve quality and fascilitate logistics
- Improve design, engineering and production of RAP
 - learn to up-grade RAP to the highest technical and economically feasible level before using it (pre-processing)
 - Improve chemo-physical understanding, characterization & modeling of the RAP in the pavement (materials technology)
- Low temperature recycling is the most sustainable way to go, but there are challenges regarding
 - production and placing
 - performance, durability (aging, moisture)

